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Why Mapping the Largest Scale of the Universe?

Astronomical observations have become a vital tool for studying fundamental physics, and
advances in fundamental physics are now essential for addressing the key problems in as-
tronomy and cosmology. The past 15 years have been a period of tremendous progress in
cosmology: we now have a simple cosmological model that fits a host of observations. One
of the strangest features of our current cosmological model is the observation that the ex-
pansion rate of the universe is accelerating. This late-time acceleration implies either the
existence of dark energy (DE), a substance whose equation of state is bizarre or the break
down of Einstein’s gravitation theory (GR) on cosmological scales. Understanding the cause
of cosmic acceleration is one of the great challenges of physics. Another great unknown is
the origin of primordial perturbations that grew to form the large scale structures (LSS)
that we observe today, i.e. what physics is describing the universe when it was 10−30 second
old and its temperature was about 1016 GeV.

Observations of large-scale structure have played an important role in developing our stan-
dard cosmological model and will likely play an essential role in our investigations of the
origin of cosmic acceleration and cosmic origins. Novel use of optical and UV observations
potentially offer very potent avenues to address this issue in a definite manner.

Working in the “intensity mapping regime” – large scale, low spatial resolution, moderate
spectral resolution – optical and UV surveys offer a potentially very powerful, yet economical,
avenue to map cosmological scales. The idea consists in mapping the aggregated line emission
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of many galaxies in a given frequency/redshift range rather than the emission of individual
galaxies. To not aim at resolving individual galaxies naturally allows the use of a smaller
telescope and also increases the signal strength, thus decreasing sensitivity requirements.

The matching between frequency and redshift requires that the line being mapped is well
identified. Observing at radio frequencies and focusing on the bright 21 cm HI line, this idea
lead to a flurry of experimental development and already pioneering measurements (Chang
et al. 2010, Masui et al. 2012). These developments aim either at mapping the epoch of
reionization or at mapping large scales at lower redshift to characterizing DE (Peterson et
al. 2009). Recently, the use of other lines such as CO or CII emission states has received
some interest as a probe of reionization and is also motivating several observational efforts
(Lidz et al. 2011, Gong et al. 2011, Visbal et al. 2010, Gong et al. 2012).

An obvious candidate line to extend this technique to the optical and UV window is the
hydrogen Lyman-α line (Lyα ). Indeed, to map this 121.6 nm emission line over the full
optical and ultraviolet window would allow us to map continuously a redshift range up to
z∼ 6. To extend it to slightly larger wavelengths would lead to an interesting probe of the
epoch of reionization up to z ∼ 12 (Silva et al. 2012, Pullen et al. 2012). The observational
set-up required to perform this large scale mapping is quite modest.

Some Modest Observational Requirements

To briefly illustrate what such an experiment would take, we will set as a simple requirement
that we want to map comoving scales up to 1 (10) Mpc/h up to z = 6. This naturally sets
the required angular resolution since spatial resolution perpendicular to the line of L in
Mpc/h indeed requires an angular resolution given by ∆θ = L/DA(z = 6) where DA is the
comoving angular diameter distance up to z = 6. Assuming a standard cosmology, it is
about 0.6 (6.) arcmin. for L= 1 (10) Mpc/h. A telescope with a diameter of a few tens of
cm would achieve this while providing a large collecting area. Our target redshift window
requires a frequency coverage from 121.6 nm up to 850 nm. Targeting an identical spatial
resolution along the line of sight leads to a frequency resolution, R = 2πc(1 + z)/H(z)/L,
of 2200 (220). As such, it is clear that such a survey would have rather modest needs as
compared to more contemporary surveys.

Our estimates lead to a line flux for the Lyα line varying from 5×10−19 to 2×10−16 erg.s−1.cm−2.
arcsec−2 when the source moves from z = 6 to 1. Such measurements are likely to be sky
background limited. The very dark near and far UV sky background is dominated by scatter-
ing of starlight by interstellar dust at a continuum level of order 400-600 photons.cm−2.(s.sr.A)−1

at the galactic poles, and increases toward the galactic equator (Murthy et al. 2010). The
sensitivity of an instrument designed to measure the diffuse Lyα emission from large scale
structures depends on the aperture, spectral resolution, throughput, sky background, detec-
tor background and other factors. Although it is premature to offer a detailed description of
the instrument configuration and resulting exposure time, preliminary calculations indicate
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that high signal to noise ratio can be achieved in relatively short exposures with a modest
aperture, assuming high instrument throughput and sky background limited observations.
Note that the access to space would be critical to access the large scales of interest, provide
good flat-fielding and avoid atmospheric fluctuations.

The Need for Spectral Deconvolution

For the sake of illustration, we so far made the simplifying assumption that we can directly
match a frequency to a given redshift. It is obviously true only in the limit where one line
dominates, as is the case for the 21cm radio line. In the frequency coverage of interest to
us, an abundance of emission lines will contribute and requires an extra-step to separate
the measured emission at all frequencies into redshift slices. We need to perform a spectral
deconvolution (Holder & Doré 2012).

The intensity as a function of wavelength is generally a superposition of many sources along
the line of sight at a variety of cosmological redshifts:

I(ν) =

∫
dzf(z)j(ν, z) , (1)

where f(z) indicates the flux per unit redshift and j is the redshifted spectrum. In the simple
case of a non-evolving rest-frame spectrum jrest, this can be written as

I(lnν) =

∫
dzf [ln(1 + z)]jrest[lnν + ln(1 + z))] . (2)

This is a pure convolution, where the rest frame SED has been convolved with the redshift
distribution, both of which are unknown quantities of interest. Different positions on the sky,
however, will have different f(z) (from fluctuations in large scale structure) but similar jrest,
allowing a separation of these two quantities. This is a cosmological analog of the Fourier
quotient method of stellar kinematics (Sargent et al. 1977), with the added feature of using
multiple lines of sight to disentangle the rest spectrum and that the dominant line ratios are
very perfectly known.

Cosmological evolution of the SED will complicate this simple picture, but evolution with
redshift should be modest over the scales of interest; a parameterized redshift evolution that
is subsequently marginalized over should be sufficient to minimize this source of confusion.
Ultimately, we expect to be able to separate deconvolution in angular, redshift and ln ν space
from which we will be able to extract the 3D matter power spectrum as a function of scales.
This last stage will require the determination of an effective luminosity weighted bias as
function of redshift. This will be possible using the measurement of redshift space distortion
on very large scales using techniques developped for spectroscopic galaxy survey (Hamilton
1997, Kaiser 1987, White et al. 2008).
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Cosmological Implications

We propose a modest experimental set-up that allow to map in the optical and UV the full
sky as a function of redshift up to z ∼ 6. While it is clear that such a survey would have
rather modest needs as compared to contemporary cosmological surveys, its fundamental
physics or astrophysics impact could nevertheless be paramount.

We could basically produce a three-dimensional map of the matter distribution throughout
our universe. Our three dimensional resolution is enough to probe all the modes in the
quasi-linear regime which are typically used for doing cosmology. As such, to compare
the cosmological information content of our survey, it is fair to compare its volume (directly
proportional to the number of modes) to other current and future surveys. Roughly speaking,
mapping 8,000 square degrees up to z ' 0.7, the SDSS-I survey has mapped around 5
[Gpc/h]3, the current BOSS survey will map 8,000 square degrees up to z ' 0.9, that is
about 9 [Gpc/h]3. The ESA/NASA Euclid is set to cover 15,000 square degree up to z ' 2,
that is about 80 [Gpc/h]3. The mapper we are proposing, mapping the full sky up to z ∼ 6
would cover about 800 [Gpc/h]3.

This mapping would thus turn into orders of magnitude improvements in the constraints
on cosmological parameters expected from the experience mentioned above. To access large
(linear) scales in redshift space would enable the joint determination of the expansion history
and the growth rate of structures. The former stems from the measure of the baryonic
acoustic oscillations scale (Eisenstein et al. 2005), the characteristic scale imprinted by the
sound waves within the primordial plasma in the Early Universe, and use this cosmic ruler to
determine the hubble constant as a function of redshift. The latter results from the impact of
cosmic velocity on the measured redshift, which depends upon the growth rate of structures
(Kaiser 1987). To be able to probe both the acceleration and the growth is critical: if cosmic
acceleration is caused by DE, then there is a simple relation between the two. Deviations
would imply the breakdown of GR, a nearly century-old pillar of modern physics (Weinberg
et al. 2012).

This mapping would also provide exquisite constraints on the nature of the initial conditions
and in particular the primordial non-Gaussianity. The sensitivity of such an experiment
would be such that the primordial non-Gaussianity would be easily measured, indepen-
dently of the Inflation model considered, a feat achieved by no other cosmological planned
experiment. The combination of small and large scale power would provide a precision tests
of inflation, since it would extend the lever arm for constraining the spectral index and its
running for the power spectrum of inflationary seed fluctuations. It would also provide an
ideal test-bench to test general relativity on cosmological scales. Finally, the exquisite shape
measurement of of the power spectrum and its redshift evolution would allow to constrain
neutrino mass to a tenth of an eV.

Such a survey would certainly contributes towards NASA’s strategic goal 3.4 “Discover
the origin, structure, evolution, and destiny of the universe” (NASA Science plan, p.161).
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We’ll directly address the suggested “Decadal Outcomes” outlined in NASA’s science plan
to “1. Progress in understanding the origin and destiny of the universe ... and the nature
of gravity” and “2. Progress in understanding how the first stars and galaxies formed, and
how they changed over time into the objects we recognize in the present universe.” (NASA
Science Plan page 161). This proposal also addresses six of the key questions identified in the
Atro2010 report ”New Worlds, New Horizons in Astronomy and Astrophysics (NAS Decadal
Survey): Why is the universe accelerating?, What is the fossil record of galaxy assembly from
the first stars to present?, What are the connections between dark and luminous matter?
How do cosmic structures form and evolve? and ”How did the universe begin?”.

We would be definitely be interested in participating and presenting our science objectives
and investigations at a workshop, if invited.
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