Cosmic Origins
Program Analysis Group (COPAG)
Science Analysis Group 8 (SAG8)

Cosmic Origins Science with the WFIRST Archive

Sally Heap
COPAG-ExoPAG Mtg., Boston, MA
5 June 2014

SAG 8 Current members

SAG 8 Lead: Sally Heap/GSFC (me)

Other members to date

Carter Chamberlain / Va Tech

Caryl Gronwall / PSU

Mario Juric / LSST

Anton Koekemoer / STScI

Jeff Kruk / GSFC

Roy Lubit / RCN.com

Tom McGlynn / GSFC

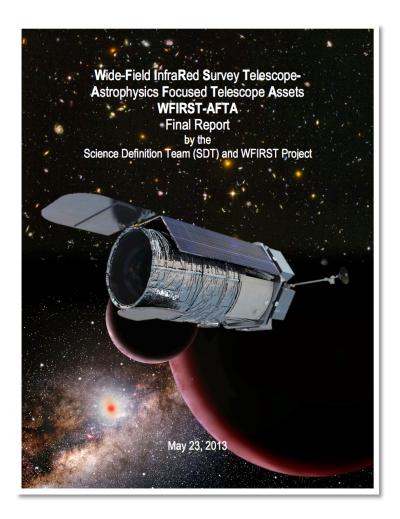
Chris Stockdale / Marquette U.

Harry Teplitz / IPAC

SAG#8 Charter: Cosmic Origins Science Enabled by the WFIRST-AFTA Data Archive

SAG #8 will:

- Solicit from the community the types of investigations that will be conducted
- Identify the kinds of data products that are valued and needed
- Analyze how the archive is to be used and scope the data requirements* necessary to conduct COR science investigations
- Consider what other assets or efforts may be needed to maximize the science return from the WFIRST archive (e.g., coordination of WFIRST-AFTA data with LSST, Euclid, or JWST)


^{*} high-level science products, catalogs, archive interface design, calibration requirements, data accessibility and distribution, computing resources, and archive operations

Cosmic origins science is part of the WFIRST program

- Existing observations: WFIRST observations obtained for other purposes, e.g. microlensing observations
- New observations: 25% of the WFIRST observing program

(1 ¼ years) is for Guest Observers. Some observations will use exoplanet instruments Either way, data in the WFIRST archive will be useful for cosmic origins science

Community input gathered by WFIRST SDT

Appendix A One Page Science Ideas

Wide Field Infrared Survey Telescope (WFIRST-2.4)

A Collection of One Page Science Programs from the Astronomical Community

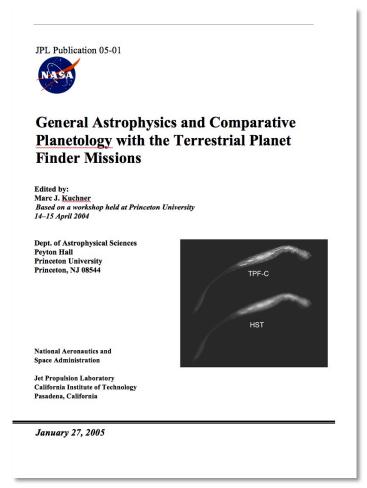
> Version 1.0 Mar 2013

http://wfirst.gsfc.nasa.gov/

Community Members that Submitted 1-page Descriptions of Potential GO Science Programs in the 2013 SDT Report

04/30/20

Cosmic Origins Science with Microlensing Observations


 Sahu: Detecting neutron stars and black holes through microlensing (A-18)

 Gaudi: Proper motions and parallaxes of disk and bulge stars → kinematics & structure of the bulge (A-19)

Cosmic Origins science with exoplanet instruments: coronagraph

Chapters on:

- Comparative planetology
- Circumstellar disks
- Stars
- Galaxies and AGN
- Cosmology

Cosmic Origins science with exoplanet instruments: IFU spectra

	Key Observation	Improvement over DRM1	Section
What were the first objects to light up the universe, and when did they do it?	Detect early galaxies and qua- sars for follow-up by JWST, ALMA, and next generation ground-based telescopes	~10x increase in high z JWST target galaxies Very high-z supernova	2.3.1 A-43, A-45, A-46 B-5
How do cosmic structures form and evolve?	Trace evolution of galaxy properties	1.9x sharper galaxy images	A-31, A-32, A-39 A-47, B-13
What are the connections be- tween dark and luminous matter?	High resolution 2000 sq. deg map of dark matter distribution and still higher resolution maps in selected fields Dark Matter distribution in dwarfs to rich clusters	Double the number density of lensed galaxies per unit area. Capable of observing 200-300 lensed galaxies/arcmin ² Astrometry of stars in nearby dwarfs	A-25, A-26, A-33 A-35, A-36, A-37 A-38, A-50

What is the fossil record of galaxy assembly from the first stars to the present?	Map the motions and properties of stars in the Milky Way + its neighbors Find faint dwarfs	3x increase in photometric sensitivity + 9x increase in as- trometric speed JWST follow-up	A-21, A-22, A-25 A-26, A-27, A-28 A-29, A-30, B-19
How do stars form?	Survey stellar populations across wide range of luminosities, ages and environments	IFU spectroscopy 3x more sensitive + 1.9x sharper galaxy images	A-11, A-12, A-13 A-14, A-15, A-16 A-47, B-8 , B-11
How do circumstellar disks evolve and form planetary systems?	Image debris disks	Coronagraph	2.5.2
How did the universe begin?	Measure the shape of the gal- axy power spectrum at high precision; test for signatures of non-Gaussianity and stochastic bias	Higher space density of galaxy tracers; higher space density of lensed galaxies	2.2

	Key Observation	Improvement over DRM1	Section
How do baryons cycle in and out of galaxies, and what do they do while they are there?	Discover the most extreme star forming galaxies and quasars		2.3.4
What are the flows of matter and energy in the circum- galactic medium?			
What controls the mass- energy-chemical cycles within galaxies?	Study effects of black holes on environment	IFU Spectroscopy	A-34
How do black holes grow, ra- diate, and influence their sur- roundings?	Identify and characterize qua- sars and AGNs, black hole hosts Use strong lensing to probe black hole disk structure	Excellent match to LSST sensitivity 1.9x sharper images	A-41, A-43, A-48
How do rotation and magnet- ic fields affect stars?			
How do the lives of massive stars end?	Microlensing census of black holes in the Milky Way		A-18
What are the progenitors of Type la supemovae and how do they explode?	Study supernova la across cosmic time Detect SN progenitors in near- by galaxies	IFU Spectroscopy	B-7
How diverse are planetary systems?	Detect 3000 cold exoplanets and complete the census of exoplanetary systems throughout the Galaxy.	60% increase in the number of Earth size and smaller planets detected by microlensing, im- proved characterization of the planetary systems	2.5.1, 2.5.2.3 A-6, A-7, A-8 B-15, B-17

Further information

Contact information:
 Sally.Heap@NASA.gov

- Web page(s):
 - COR.gsfc.nasa.gov
 - WFIRST.gsfc.nasa.gov

WFIRST-AFTA SDT Final Report (May 2013)
(includes the 1-page science ideas)
WFIRST-AFTA SDT Interim Report (Apr 2014)