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Circumstellar Disks at All Stages of Stellar Evolution

* Pre-Main Sequence: protoplanetary disks (see review by Andrews+2015)

~0.035” with
ALMA in

star forming region around HL Tau (red square ) 2014

* Main Sequence: debris disks (see review by Matthews+2014)

* Post-Main Sequence: dusty disks around white dwarfs

(see review by Farihi2016) Also see “Circumstellar Disks: What will be next?” by

Kral, Clarke & Wyatt, astroph/1703.08560



New Capabilities Enable New Discoveries
* Wavelength Coverage
* Sensitivity < telescope size + mirror temperature
* Resolution in both spectral and spatial

* Time Domain >250 K
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Tremendous Strides in the Last Three Decades

The Fomalhaut debris disks: a wealth of observations at a wide range of wavelengths and
spatial scales from photometry, imaging to interferometry reveal the complex disk structures.
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The Need for Spatial Resolution

Planets determine the planetesimals distribution in a planetary system. Dust debris,
generated by planetesimals, also influences by non-gravitational forces, and their resultant
emission is temperature dependent.

e Particle Distribution for Solar System

with planets without planets

Liou & Zook 1999

e Mid-Infrared Emission Distributiqs

one belt w/ planets one belt w/o planet two belts w/ planets

The dilemma in
¢ Eri using Spitzer
observations:
multiple belts?
or one belt?




The Inner Debris Structure in € Eri?

MIPS 24 pum FORCAST 35 um PACS 160 um_
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The Inner Debris Structure in € Eri?

MIPS 24 pm FORCAST 35 um

The sub-arcsec resolution enabled by
JWST observations will resolve the
inner debris structure in € Eri, and
settle the long debate between two
Backman+ 2009 inner belts or one broad disk.

fwo narrovg 0 e @ VG @
inner belts? 2 v
Backman+ 1.5-2 AU 8-20 AU
2009 inner outer
Su+ 2017 asteroid belt asteroid belt
one broad

puff-up disk?

65 m infrared telescope to ., ;6
R TG l-0e [aunched inmid 2019 | = .

Greaves+
2014

3-21 AU

——— .



High SpatlaI&SpectraI Resolutlons of JWST

6 5-m infrared telescope to
be Iaunched in mid 2019«

A suite of instruments (NIRCam NIRSpec MIRI
FGS/NIRISS) capable of performing high-resolution
imaging and spectroscopy from 0.6 to 28 um.

In addition to new discoveries, JWST wiill
provide a great opportunity to extend and
follow-up the legacy started by Spitzer
with much more powerful capabilities.
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Mid-infrared spectra from
thermodynamically altered
minerals (various forms of
crystalline silicates) can
probe the physical
conditions of violent events
in the disks.



Extreme Debris Disks: Tracers for Large Impacts

Systems around young stars (~10 Myr to 200 Myr) with large amounts
of dust in the terrestrial zone and prominent silicate features. ~50% of
them show disk variability at 3.6/4.5 pum (Meng, su+ 2015; Su+ 2018, in prep. ).

Meng, Su, Rieke+ 2014
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and JWST will enable time-series
study in extreme debris disks,
providing much needed
constraints on terrestrial planet
formation theories.
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100-1000x greater
than any previous
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Visit our websites:

origins.ipac.caltech.edu
asd.gsfc.nasa.gov/firs
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The Power of Spatial Resolution with OST

Planet-Disk Interaction - structures created by planet(s)

Jupiter mass Neptune mass
Model OST Herschel ~  Model OST Herschel

o P

1

Q ¥

i

o

|

v

™

o

]

)

: O

Models are the dust density distributions from Deller & Maddison (2005) with various planet masses and eccentricities,
which are observed with 1” (OST, concept 1) and 5.6” (Herschel) resolutions.
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The Power of Sensitivity with
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A large, cryogenic cold telescope (like OST) can discover many more disks, and
provide a census of true Kuiper-belt analogs, putting our Solar System into context.



