Technology Roadmap for the Far-IR

Dave Leisawitz, NASA GSFC
3-14-2011

To: Joe Alexander, Staff Officer
NASA Technology Roadmap: Instruments and Computing Panel

From: FIR Community organizing group

Dear Joe:

The NASA Space Technology areas roadmap presents a plan for future agency investment strategy that will meet established goals. As representatives of the far infrared astronomy community, we would like to contribute suggestions to enhance the *Science Instrument, Observatories, and Sensor Systems (SI OSS, Technology Area 08)* roadmap, now under review by the NRC. This input has been requested by the NRC.

- Detectors
- Large, cold telescopes
- Passive cooling
- Active cooling
Technology Roadmap for SPIRIT

<table>
<thead>
<tr>
<th>Technologies</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detectors</td>
<td></td>
<td>Working 10^{-19} NEP devices</td>
<td>Multiplexing in formats of 256 elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CADR handoff from SCOTT testbed</td>
<td></td>
<td>TES and MKID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryocooler handoff from JWST</td>
<td></td>
<td>4-stage, 50 mK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handoff from SCOTT testbed</td>
<td></td>
<td>Modeled, scalable ground test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active R&A program</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryo-thermal system and cryocoolers</td>
<td></td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous ADR/Cryocooler Demo</td>
<td></td>
<td></td>
<td></td>
<td>Continuous ADR/Cryocooler Demo</td>
<td>5 μW at 50 mK</td>
<td>1 μW at 30 mK</td>
</tr>
<tr>
<td>Wide-field double Fourier interferometry</td>
<td></td>
<td>5</td>
<td></td>
<td>5-stage, 30 mK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CADR electronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Testbed data, optical system model, algorithms</td>
<td>4</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technology Readiness Level (TRL)
Detectors

- **Enables:** astrophysical background-limited sensitivity
- **Requirements:** 14x14 pixels, NEP $\sim 10^{-19}$ W/Hz$^{1/2}$, 200 µsec time constant
- **Most promising:** TES bolometers and MKIDs
- **Requires:** $T \sim 30 – 50$ mK focal plane
- **Current TRL:** 3
- **Time to TRL 6:** 4 years
- **Cost to TRL 6**
- **Funding external to AD** International (e.g., SRON)
- **Key infrastructure:** GSFC, JPL, NIST facilities
- **Stretch goal:** photon-counting detectors
Cryocoolers

- **Enables**: background-limited sensitivity; lower launch mass; longer lifetime
- **Requirements**: 72 mW at 4 K, 180 mW at 18 K; 5 μW at 50 mK, 1 μW at 30 mK
- **Most promising**: JWST MIRI cooler w/ 3He; C-ADR
- **Requires**: 4 K optics; ~30 mK focal plane
- **Current TRL**: 4
- **Time to TRL 6**: 3 years
- **Cost to TRL 6**: TBD
Cryo-thermal System

- Integrate cryocoolers into subscale Engineering Test Unit with solar simulator
- Verify understanding of system thermal performance with computational model
Wide-field Spatio-Spectral Interferometry

- Present TRL: 4
- Time to TRL 6: 3 years
- Cost to reach TRL 6: $0.5M
Spectrometers

• Compact architectures (e.g., Bradford’s BLISS, Moseley’s μSpec)