Evolvable Space Telescope (EST)

Joint Exo-PAG and Co-PAG @ Seattle AAS meeting

January 4, 2015

James B. Breckinridge

Breckinridge Associates, LLC

Charles F. Lillie

Lillie Consulting, LLC

Ronald S Polidan, Martin R Flannery and Dean R Dailey

Northrop Grumman Aerospace Systems

Howard A MacEwen

Reviresco. LLC

Approved for Public Release: Northrop Grumman 14-2987, 11/14/14

© 2014 Northrop Grumman Systems Corp.

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

- Funding profile spike
- Total and annual cost uncertainties'
- Maintain flow of science data
- 20-meter class telescopes
 –In one launch!

JWST funding profile [illustration]

Λ

\$

Evolvable space

telescope objectives

Modulate the large cost per year fluctuations In-space replacement of instruments Grow the performance with time Schedule is dictated by budget realities, science needs and technology advances Steps to ~20-m: phase 1, 2, 3

Science Drivers [stage 1,2,3 =>~20m]

- Design concept based on science drivers from the ATLAST study*:
 - Exoplanet characterization and the discovery of life outside the solar system
 - Origin and evolution of the universe
 - Star formation and galaxy assembly
 - Distribution and nature of dark energy and dark matter
- Science objectives will evolve with each stage of EST deployment, ultimately achieving full ATLAST capability at Stage 3 with a 14 to 20 meter aperture
 - Stage 2 and 3 configurations may be enhanced by Stage 1 data
 - Enhancements will be expected for each stage's instruments
- Each stage, beginning with stage 1, designed to contribute significant science beyond then-current state-ofknowledge. This is a <u>Fundamental Design Rule</u> for EST
- http://www.stsci.edu/institute/atlast/atlast-mission-concept-Study

Sun Detectable at S/N=5

Primary mirror aperture grows with time

- 20-m Telescope assembled on-orbit in three stages:
 - Stage 1: Launch 2 mirror segments and secondary in ~4.5-m x 12-m off-axis "Bowtie" configuration fully functional observatory
 - Stage 2: Launch 4 mirror segments to complete 1st ring for 12-m on-axis Cassegrain observatory
 - Stage 3[:] Launch 12 mirror segments to add 2nd ring for 20-m on-axis Cassegrain observatory
- On-orbit servicing and instrument replacement on each visit
- Sunshield replaced on 2nd visit

First order design parameters									
Hex Size	Aperture	Collecting	Number of	Primary	Telescope	Field of	Focal Plane	Airy patterns	Number of
(flat-flat)	Diagonal	Area	Segments	F/No.	Resolution ¹	View ²	plate scale	in FP ³	Pixes in FP ⁴
(meters)	(meters)	(meters ²)			(mas)	(arc-min)	(arcsec/mm)		
3.95	4.8 x 11.9	27.02	2	5.5 x 2.1	28 x 11	40 x 31	1.7 x 1.6	1.52E+08	6.08E+08
3.95	12.5	81.07	6	2.12	10.62	31.16	1.63	3.10E+10	1.24E+11
3.95	20.1	243.22	18	1.25	6.25	22.74	1.59	4.77E+10	1.91E+11
¹ Diffraction li	mited resolut	ion at 500nr	n (1.22 /D) i	³ Number of Airy diffraction patterns at the FP in the yz plan					
² FOV with 150 cm diameter hole at Prime Mirror						⁴ # of pixels in the 2-D detector at Nyquist based the yz plan			

First order design parameters

Candidate Telescope Configurations

Prime focus layout for one segment

THROP GRUMMA

- One reflection to the prime focus
 - 1st Coronagraph Mask and/or
 - UV spectrograph entrance slit
- Two reflections to the first A/O mirror
 - (Maximize transmittance)
- Enables low instrument polarization

Bow-Tie Prime focus Phase 1

–Two 3.9 m (Flat to Flat) Hex Segments–Aperture 11.75 m Long X 4.1 m Wide

Approved for public release; distribution unlimited. NGAS Case 14-2697 dated Oct 6, 2014.

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

Backup Charts

Top Level Requirements

- Are we alone? How did we get here? These 2 fundamental questions can be addressed with a large UVOIR space telescope, with:
 - Large aperture (10 to ≥16 meters)
 - Starlight suppression to enable exoplanet observations (10⁻¹⁰ contrast)
 - UV to NIR wavelength coverage (100 to 2400 nm)
 - Diffraction-limited optical quality (12 to \leq 8 mas at 500 nm, \geq 80% Strehl)

Parameter	Requirement	Goal	Notes		
Telescope Aperture	> 10 m	> 16 m	> ATLAST concept		
Stage 1	Bow-tie	4 x 12 m	Two hexagonal segments		
Stage 2	Filled Aperture	12 m	Eighteen hexagonal segments		
Stage 3	Filled Aperture	20 m	Twelve hexagonal segments		
Wavelength	100-2400 nm	90-8000 nm	UVOIR, MIR under evaluation		
Field of View	5 to 8 arcmin	30 arcmin	Wide field VNIR imaging		
Diffraction Limit	500 nm	250 nm	Enhanced UV/Optical resolution		
Primary Segment Size	2.4 m	3.93 m	flat to flat		
Primary Mirror Temp	< 200 K	150 K	Minimize heater power		
Design Lifetime	15 years	>30 years	On-orbit assembly and servicing		