

The upGREAT Spectrometer for SOFIA

Erick Young SOFIA Science Center

225th AAS Meeting 5 January 2015

SOFIA One-Minute Status

- SOFIA returned in December from an extensive Heavy Maintenance at Lufthansa Technik in Hamburg
 - Airframe inspections
 - Telescope refurbishment
- Science flights resume next week
 - GREAT Cycle 2 Series, followed by FORCAST and EXES
 - Cycle 3 observations begin in March
 - Southern Hemisphere deployment
- Cycle 4 Call for Proposals end of April, due in late June
 - upGREAT and HAWC+ will be coming on line

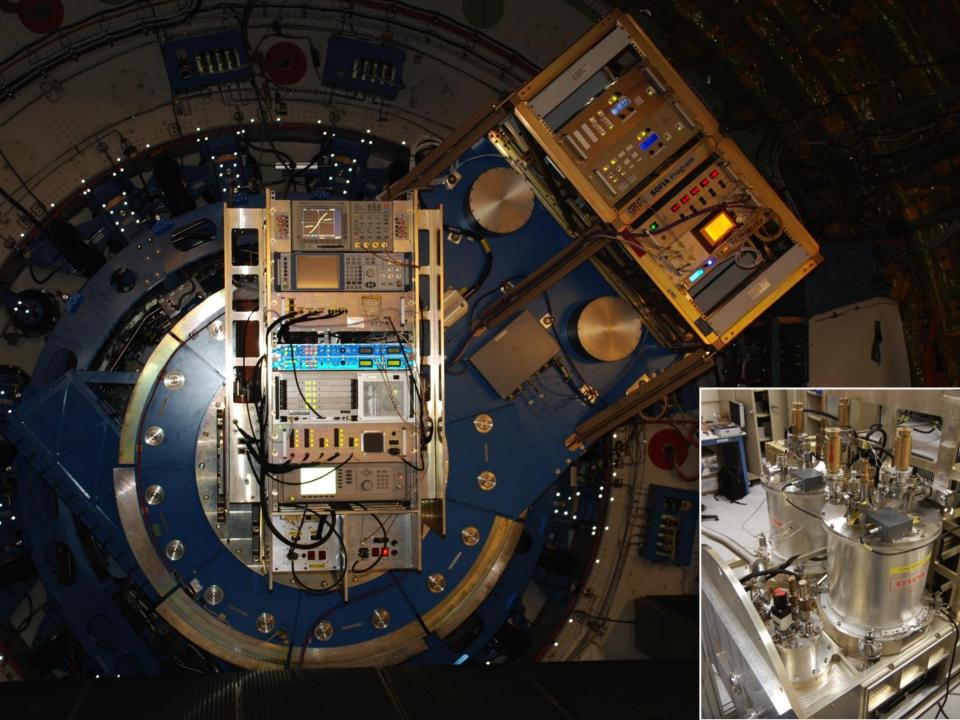
SOFIA Splinter Session Monday Evening

GNEA

German Receiver for Astronomy at THz Frequencies

Modular dual-channel heterodyne receiver for high-resolution spectroscopy with SOFIA

Principal Investigator instrument - funded, developed & operated by


- MPI Radioastronomie
 - R. Güsten (PI)
 - S. Heyminck (system engineer, PA/QA)
 - > B. Klein (FFT spectrometer)
 - C. Risacher (upGREAT project manager)

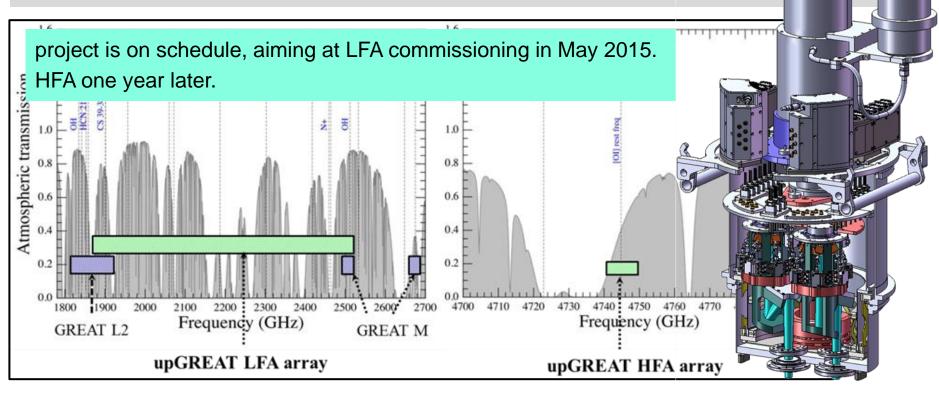
Universität zu Köln, KOSMA

- J. Stutzki (Co-P: software)
- > U. Graf (system engineer)
- > K. Jacobs (HEB mixers up to 2.7 THz)

DLR Planetenforschung

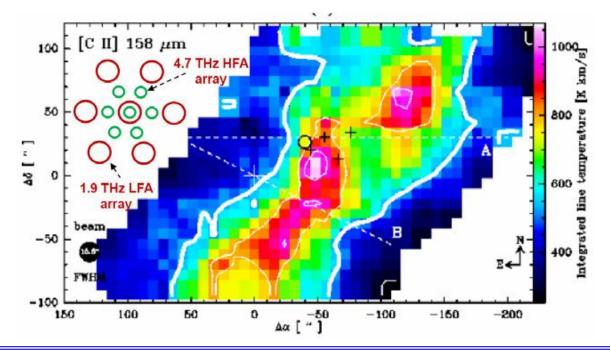
- > H-W. Hübers (Co-PI: 4.7 THz HEB & QCL)
- MPI Sonnensystemforschung
 - P. Hartogh et al. (CO-PI: CTS)

- GREAT is a highly modular heterodyne spectrometer $(\Re \sim 10^8)$
- **D** operating in science-defined frequency bands 1.25 < v < 4.7 THz
- 2 out of currently 4+1 cryostats can be operated simultaneously
- channel availability (as of Dec 2014)
 - > 2 low-frequency channels are operational since Early Science (2011)
 - > 2 mid frequency channels:
 - M_a operational; M_b on hold for mixer upgrade, waiting for commissioning slot
 - high-frequency channel commissioning in 05/14, available for cycle 3


Channel		Frequencies [THz]	Lines of interest	Status
low-frequency	L1	1.26 – 1.52	[NII], CO series, OD, H ₂ D ⁺	operational
low-frequency	L2	1.82 – 1.91	NH ₃ , OH, CO(16-15), [CII]	operational
mid-frequency	Ма	2.49 – 2.56	⁽¹⁸⁾ OH(² Π _{3/2}),	operational
	Mb	2.67	HD	on hold
high-frequency	Н	4.74	[OI]	opertional
upGREAT	LFA	14x (1.9–2.5)	CO series, [CII], [OI], OH	commissioning Q2 15
upGREAT	HFA	7x [4.74]	[OI]	1 yr after LFA (Q1 16)

MPIfR KOSMA MPS DLR-Pf

the extension of GREAT into 2 hex arrays, operating in parallel


- 2x 7 low-frequency pixels (LFA) and
- 1x 7 high-frequency pixels (HFA),
- or (m)any combination with GREAT's single pixel detectors

- upGREAT an enhancement of the GREAT heterodyne instrument is under development by Rolf Güsten and collaborators.
- Compact heterodyne arrays
 - > 7 pixels x 2 polarizations @ 1.9 to 2.5 THz
 - 7 pixels @ 4.7 THz [O I]

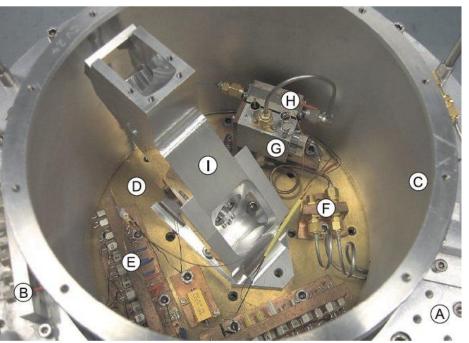
	Low Frequency Array (LFA)	High Frequency Array (HFA)
RF Bandwidth	1.9-2.5 THz (goal) 1.9-2.1 THz first light	4.745 THz \pm 2 GHz
IF Bandwidth	0.2-4 GHz	0.2-4 GHz
HEB technology	Waveguide-based HEB NbN on Si membrane	Waveguide-based HEB NbN on Si membrane
LO technology	Cooled photonic mixers (goal) / solid-state chains (baseline)	Quantum cascade lasers (QCL)
LO coupling	Beamsplitter or Diplexer (depending on LO power available)	Beamsplitter
Array layout	2x7 pixels for orthogonal polarizations in hexagonal configuration with central pixel	1x7 pixels in hexagonal configuration with a central pixel
T _{REC}	~600-1500K DSB 0-4GHz IF	~800-1800K DSB 0-4GHz IF
Backends	0-4 GHz with up to 128k channels	0-4 GHz with up to 128k channels

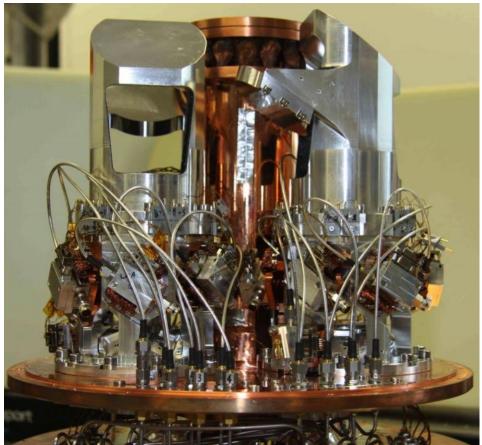
upGREAT Cryostats

LFA cryostat fully assembled

- Pulse tube PTD-406C

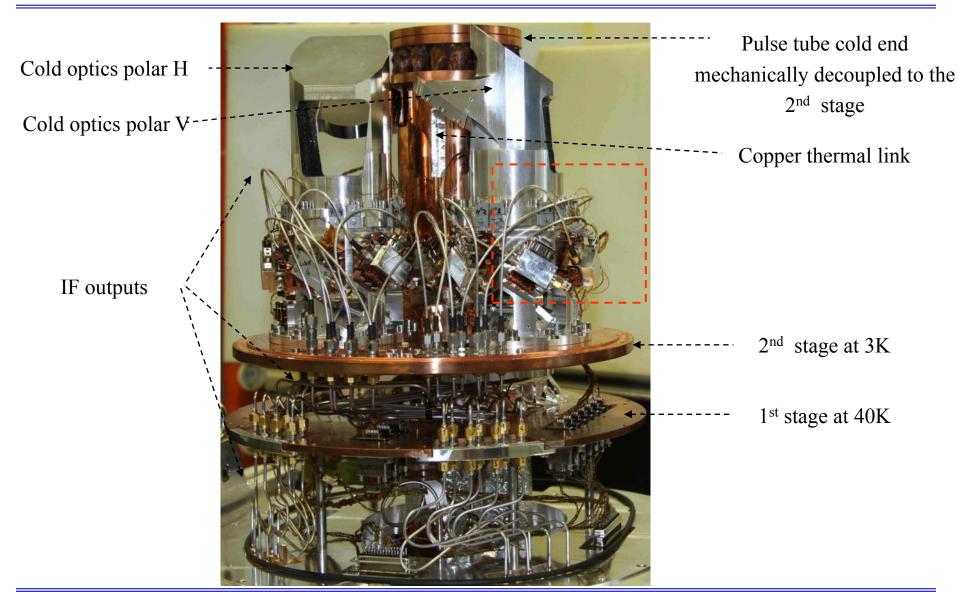
Pre-amplifiers for HEB biasing


Warm IF LNAs 0-4 GHz

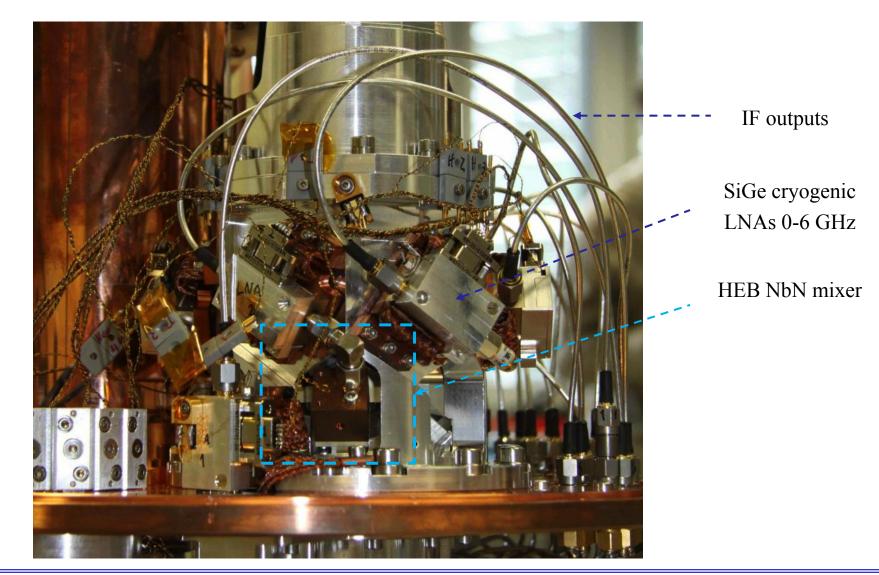


Comparison single pixel vs array receivers

MPIfR KOSMA MPS DLR-Pf



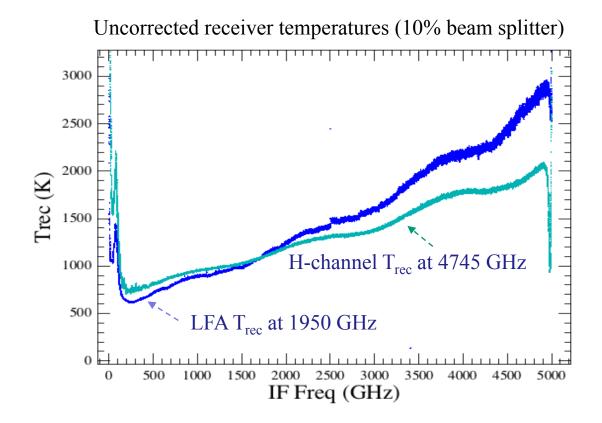
GREAT L2 receiver 1.9THz single pixel upGREAT LFA receiver 1.9-2.5THz 14 pixels



upGREAT LFA Cryostat

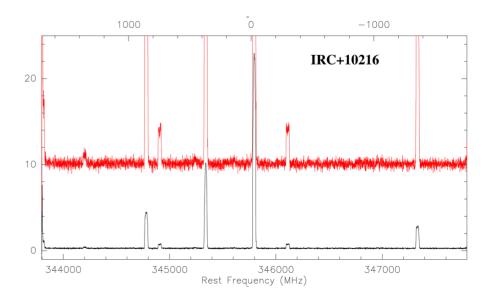
upGREAT LFA Focal plane components

MPIfR KOSMA


MPS DLR-Pf

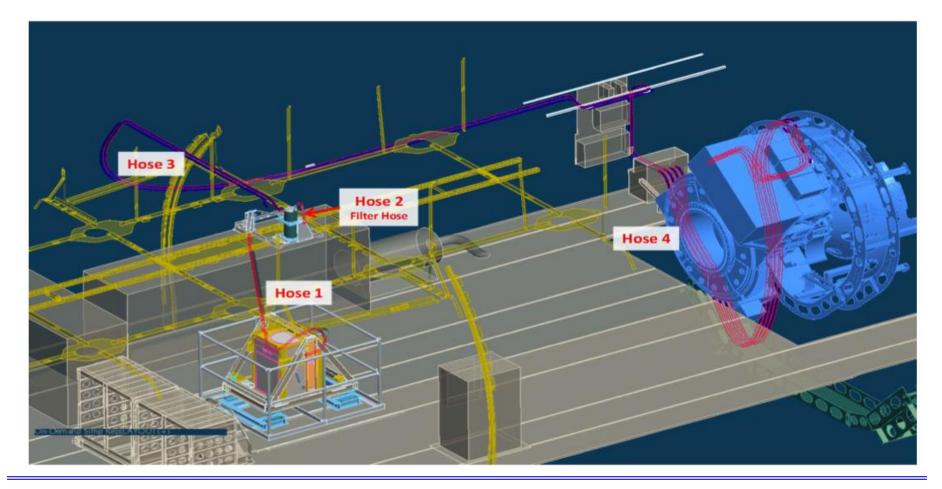
MPIfR KOSMA MPS DLR-Pf

Novel mixers: waveguide-based HEB NbN devices on thin Si membrane (KOSMA)


- LFA: depending on available LO power, beam splitter or diplexer will be used
- HFA: beam splitter is baseline (based on successful operation of H-channel)

Local Oscillators

- Low Frequency Array
 - Photonic LO's (MPIfR)
 - Solid State LO's (Virginia Diode)
- High Frequency Array
 - Quantum Cascade LO's (DLR & KOSMA)
- Wide Band FFT Spectrometers
 - Developed by MPIfR
 - 0 4 GHz Bandwidth
 - 64K Channels


Successful spectrometer demonstration on APEX telescope with a 345 GHz receiver

MPIfR

KOSMA MPS DLR-Pf

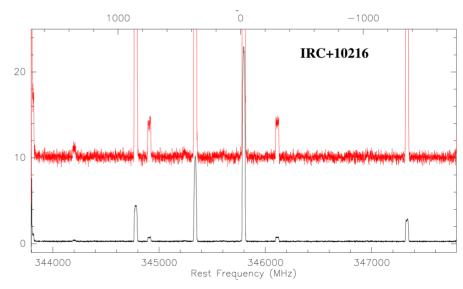
First closed-cycle cryo-cooler operation. Pulse tube coolers from TransMIT (Giessen, Germany) are customized for operation on board of SOFIA. Certification is ongoing.

- The spatial multiplexing of GREAT (14x L2, 7x H) will greatly boost the science productivity of SOFIA
- SOFIA/GREAT will outperform Herschel/HIFI by an order of magnitude, and will carry spectroscopy into frequency regimes uncovered by HIFI.
- The next steps:
 - Shipment to Palmdale mid of March
 - Integration of upGREAT components in April 2015
 - Commissioning of 2x7 LFA pixels in May 2015 (flying with L1-channel)
 - HFA expecting commissioning slot in Q1/2016

http://www.sofia.usra.edu

Backup

- For the upGREAT LFA, two developments are done in parallel:
 - Photonic local oscillators (MPIfR) for wideband operation (1.9-2.5 THz)
 - current devices reach a few µW of output power
 - new design tests are ongoing goal is >4 μ W per HEB mixer
 - Solid-state LOs (VDI) for the lower band: 1.9-2.1 THz
 - 2 units operated in parallel, each pumping one sub-unit of 7 mixers
 - required power >30µW for 7 pixels, LO distribution via phase gratings
 - baseline configuration for LFA commissioning
- For the upGREAT HFA band, parallel developments of QCL technology by DLR-Pf and KOSMA groups:
 - LO power should be >100-200 μ W
 - Successfully demonstrated in-flight operation of prototype in GREAT H-channel



New generation of monolithic 4 GHz wide FFT spectrometers (MPIfR)

- design successfully verified during field operation at APEX
- works with 0-4 GHz instantaneous bandwidth with 64k channels
- production of boards completed, 21 units in final integration.

Successful demonstration on APEX telescope with a 345 GHz receiver