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Why Interferometry? 

Interferometry provides the flexibility needed to satisfy 
science-driven measurement requirements within 
externally-imposed constraints, and without paying a 
cost and feasibility penalty for an arbitrary architectural 
constraint. 

Space mission design is systems engineering; it’s an 
optimization problem. 
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Why Interferometry? 

flexibility 
science-driven measurement requirements 
externally-imposed constraints

an arbitrary architectural 
constraint. 
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Measurement Requirements 

Parameter Units Value or Range 

Wavelength range mm 25 - 400 

Angular resolution arcsec < 1 

Spectral resolution, (l/Dl) dimensionless 

Continuum sensitivity mJy 

Spectral line sensitivity 10-19 W m-2 

Instantaneous FoV arcmin 

Number of target fields dimensionless 

Field of Regard sr 
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Measurement Requirements 

Parameter Units Value or Range 

Wavelength range mm 25 - 400 

Angular resolution arcsec < 1 

Star and planetary system formation, 
development of habitable conditions 

Exoplanet detection 
and characterization 
based on debris disk 
structure 

Galaxy 
formation 
and 
evolution, 
buildup of 
heavy 
elements 
and dust 
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Diffraction is our Enemy 

Parameter Units Value or Range 

Wavelength range mm 25 - 400 

Angular resolution arcsec < 1 

q = 1.22l/D 

JWST 

D = 1.22l/q  

    = 25 (l/100 mm)(q/1 arcsec)-1 meters 
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Michelson is our Friend 

Stellar Interferometer with 6 m baseline , c. 1919 

q = l/2b 

b = l/2q  

   = 10.3 (l/100 mm)(q/1 arcsec)-1 meters 
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A Century of Interferometry 

Michelson’s Stellar Interferometer, c. 1919 James Webb Space Telescope, c. 2018 

These are both Fizeau interferometers. 
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Single aperture: arbitrary 
architectural constraint 

25 m 

As discussed by Wright (1999; see 
www.astro.ucla.edu/~wright/Jun99AAS/): 
• a background-limited, diffraction-limited 

telescope this size would reach the 
confusion noise floor (~100 mJy) in about 5 
milliseconds! 

• The integration time needed to reach a 
given flux with an interferometer goes as 
(b/D)4, a steep function, but the integration 
times for b = D are so short that “working 
with b/D as large as 30 is very practical.” 
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Single aperture: arbitrary 
architectural constraint 

If the goal is to achieve sub-arcsecond 
angular resolution with adequate 
sensitivity, it makes no sense to impose 
the constraint that the aperture should 
be monolithic and needlessly large. 

Large means more mass to cool to ~4 K, 
more mass to launch, and much higher 
cost. 
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Interferometer: flexibility to meet 
measurement requirements 

Measurement Requirements 

Wavelength range 

Angular resolution 

Spectral resolution, (l/Dl) 

Continuum sensitivity 

Spectral line sensitivity 

Instantaneous FoV 

Number of target fields 

Field of Regard 

• Maximum baseline 
• u-v plane coverage 

• Optical delay scan range (FTS) 
for l/Dl up to ~104 

• Heterodyne for l/Dl >> 103 

• Aperture size 
• Number of telescopes 

• Number of detector pixels 
• Optical delay scan range to 

equalize path length 

• Sun shield size and 
configuration 

Design parameters 

Many knobs to turn in design and 
operation. Nothing is wasted or over-
constrained. 
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First Look at the Trade Space: 
Heterodyne vs. Direct Detection 

Heterodyne detection Direct detection 

Pros: 
• Spectral resolution 

>105 

 

Cons: 
• Quantum noise-

limited sensitivity 
• Small FoV 
• Limited u-v coverage 

if apertures are free-
flying 

Pros: 
• Astrophysical 

background photon 
noise-limited 
sensitivity 

• Imaging and 
spectroscopy in 1 
instrument 

 

Cons: 
•  Spectral resolution 

<104 
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SPIRIT Concept: Direct Detection 
Space Infrared Interferometric Telescope 

For details, see poster by Leisawitz et al. poster at 
http://asd.gsfc.nasa.gov/conferences/FIR 

• Structurally-connected interferometer 
• Two 1-m afocal off-axis telescopes 
• Telescopes move radially, and structure rotates to provide 

dense u-v plane coverage with maximum baseline ~36 m, 
q = 0.3 arcsec (l/100 mm) imaging 

• Integral field spectroscopy in 1 arcmin instantaneous FoV, 
spectral resolution l/Dl > 103 

• Technology: 
• 10-19 W Hz-1/2, 200 ms detectors in 14x14 pixel arrays 
• Cryocoolers for 4 K telescopes, 30 mK focal planes 
• Wide-field spatio-spectral interferometry 
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External Constraints 

Launch vehicle 
• Lift capacity to desired orbit (e.g., Sun-Earth L2) 
• Fairing dimensions 
• Interferometers tend to be volume-limited, not 

mass-limited (e.g., trade collecting area for 
baseline length) 

Technology must be ready – TRL 6 or above 

Affordability 
• Cost estimates become increasingly accurate as 

design concepts mature 
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An Interferometer in the 
Sweet Spot 

Compelling 
science case, with 

broad base of 
support in the 

community 

Technical 
feasibility 

Affordability in 
the next decade Public interest 
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An Interferometer in the 
Sweet Spot 

Compelling 
science case, with 

broad base of 
support in the 
community? 

• Image protoplanetary disks and measure the 
distributions of water vapor and ice to learn 
how the conditions for habitability arise 
during the planet formation process; 

• Image structures in a large number of debris 
disks to find and characterize unseen 
exoplanets; 

• Probe the atmospheres of extrasolar gas 
giant planets; and 

• Make profound contributions to our 
understanding of the formation, merger 
history, and star formation history of 
galaxies, including the role of AGN in galaxy 
evolution. 
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An Interferometer in the 
Sweet Spot 

• Iconic images fit for the front page of the NY 
Times 

• A profound and easy-to-understand goal: 
“Tracing our origins from ‘stardust’ to the 
formation of habitable planets” Public interest? 
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An Interferometer in the 
Sweet Spot 

Technical 
feasibility? 

• With coordinated effort, all mission-enabling 
technologies can be matured to TRL 6 by 2018. 

• ROSES SAT and APRA programs provide funding 
opportunities. 
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An Interferometer in the 
Sweet Spot 

Affordability in 
the next decade? 

• SPIRIT was the subject of a robust Pre-Phase A 
study in 2004-5. 

• Grass roots and independent parametric cost 
estimates agree to within 20%. 

• Single instrument, small (1 m) telescopes 

• Total lifecycle cost ~$1.25B (FY09); estimate 
provided to the Decadal Survey (white paper 
http://astrophysics.gsfc.nasa.gov/cosmology/spirit/ ) 

• International interest is strong, naturally leading 
to partnership 
• Reduced cost to NASA 
• Sustainable support 
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Conclusions 

• Interferometry provides the flexibility needed to satisfy 
science-driven measurement requirements subject only to 
externally-imposed constraints. 

• The SPIRIT study indicates that an affordable interferometer 
capable of making groundbreaking scientific discoveries can 
be developed for launch during the next decade. 

• The SPIRIT design concept is flexible and can be adapted to 
meet the community’s currently prioritized science goals. 

• NASA’s Astrophysics Roadmap recognizes the importance of 
multi-aperture interferometry and suggests we start in the 
far-IR. 


