Far-IR Interferometers: Measurement Capabilities and Trade Space

Dave Leisawitz NASA/GSFC

Star and planetary system formation,

buildup of nts and dust

inlanet detection and characterization hased on debris dis

structure

Why Interferometry?

Space mission design is systems engineering; it's an optimization problem.

Why Interferometry?

Measurement Requirements

0

Parameter	Units	Value or Range
Wavelength range	μm	25 - 400
Angular resolution	arcsec	< 1
Spectral resolution, ($\lambda/\Delta\lambda$)	dimensionless	
Continuum sensitivity	μͿγ	
Spectral line sensitivity	10 ⁻¹⁹ W m ⁻²	
Instantaneous FoV	arcmin	
Number of target fields	dimensionless	
Field of Regard	sr	

Measurement Requirements

Diffraction is our Enemy

Parameter	Units	Value or Range
Wavelength range	μm	25 - 400
Angular resolution	arcsec	< 1

 $\theta = 1.22\lambda/D$

D = $1.22\lambda/\theta$ = 25 ($\lambda/100$ μm)($\theta/1$ arcsec)⁻¹ meters

Michelson is our Friend

$\theta = \lambda/2b$

 $b = \lambda/2\theta$

Stellar Interferometer with 6 m baseline , c. 1919

= 10.3 (λ /100 μ m)(θ /1 arcsec)⁻¹ meters

A Century of Interferometry

Michelson's Stellar Interferometer, c. 1919

James Webb Space Telescope, c. 2018

These are both Fizeau interferometers.

Single aperture: arbitrary architectural constraint @

Not practical

As discussed by Wright (1999; see www.astro.ucla.edu/~wright/Jun99AAS/):

- a background-limited, diffraction-limited telescope this size would reach the confusion noise floor (~100 µJy) in about 5 milliseconds!
- The integration time needed to reach a given flux with an interferemeter reach (b/D)⁴, a steep times for b = D with b/D as lar

Practical

WST at L2 in 2013

Single aperture: arbitrary architectural constraint ©

If the goal is to achieve sub-arcsecond angular resolution with adequate sensitivity, it makes no sense to impose the constraint that the aperture should be monolithic and needlessly large.

Large means more mass to cool to ~4 K, more mass to launch, and much higher cost.

Interferometer: flexibility to meet Nas measurement requirements

Design parameters

- Maximum baseline
 - *u-v* plane coverage
 - Optical delay scan range (FTS) for $\lambda/\Delta\lambda$ up to ~10⁴
 - Heterodyne for $\lambda/\Delta\lambda >> 10^3$
 - Aperture size
 - Number of telescopes
 - Number of detector pixels
 - Optical delay scan range to equalize path length
- Sun shield size and configuration

Measurement Requirements

Wavelength range

Angular resolution

Spectral resolution, $(\lambda/\Delta\lambda)$

Continuum sensitivity

Spectral line sensitivity

Instantaneous FoV

Number of target fields

Field of Regard

Many knobs to turn in design and operation. Nothing is wasted or overconstrained.

First Look at the Trade Space: Heterodyne vs. Direct Detection

Heterodyne detection

Pros:

- Spectral resolution >10⁵
- Cons:
- Quantum noiselimited sensitivity
 - Small FoV
 - Limited *u-v* coverage if apertures are free-flying

Direct detection

Pros:

- Astrophysical
 background photon noise-limited sensitivity
- Imaging and spectroscopy in 1 instrument

Cons:

Spectral resolution <10⁴

SPIRIT Concept: Direct Detection

Space Infrared Interferometric Telescope

- Structurally-connected interferometer
- Two 1-m afocal off-axis telescopes
- Telescopes move radially, and structure rotates to provide dense *u-v* plane coverage with maximum baseline ~36 m, $\theta = 0.3 \operatorname{arcsec} (\lambda/100 \,\mu\text{m})$ imaging
- Integral field spectroscopy in 1 arcmin instantaneous FoV, spectral resolution $\lambda/\Delta\lambda > 10^3$
- Technology:
 - 10^{-19} W Hz^{-1/2}, 200 µs detectors in 14x14 pixel arrays

ACTORNAL CONTRACTOR

- Cryocoolers for 4 K telescopes, 30 mK focal planes
- Wide-field spatio-spectral interferometry

For details, see poster by Leisawitz et al. poster at http://asd.gsfc.nasa.gov/conferences/FIR

External Constraints

- Lift capacity to desired orbit (e.g., Sun-Earth L2)
- Fairing dimensions
- Interferometers tend to be volume-limited, not mass-limited (e.g., trade collecting area for baseline length)
- Technology must be ready TRL 6 or above

Affordability

 Cost estimates become increasingly accurate as design concepts mature

An Interferometer in the Sweet Spot

Compelling science case, with broad base of ort in the

com

Technical feasibility

Public interest

the next decade

An Interferometer in the Sweet Spot

Compelling science case, with broad base of support in the community?

- Image protoplanetary disks and measure the distributions of water vapor and ice to learn how the conditions for habitability arise during the planet formation process;
- Image structures in a large number of debris disks to find and characterize unseen exoplanets;
- Probe the atmospheres of extrasolar gas giant planets; and
- Make profound contributions to our understanding of the formation, merger history, and star formation history of galaxies, including the role of AGN in galaxy evolution.

Public interest?

AND DESCRIPTION OF

An Interferometer in the Sweet Spot

NASA

- Iconic images fit for the front page of the NY Times
- A profound and easy-to-understand goal: "Tracing our origins from 'stardust' to the formation of habitable planets"

Technical

An Interferometer in the Sweet Spot

- With coordinated effort, all mission-enabling technologies can be matured to TRL 6 by 2018.
- ROSES SAT and APRA programs provide funding opportunities.

An Interferometer in the Sweet Spot

Affordability in the next decade?

- SPIRIT was the subject of a robust Pre-Phase A study in 2004-5.
- Grass roots and independent parametric cost estimates agree to within 20%.
- Single instrument, small (1 m) telescopes
- Total lifecycle cost ~\$1.25B (FY09); estimate provided to the Decadal Survey (white paper http://astrophysics.gsfc.nasa.gov/cosmology/spirit/)
- International interest is strong, naturally leading to partnership
 - Reduced cost to NASA
 - Sustainable support

Conclusions

- Interferometry provides the flexibility needed to satisfy science-driven measurement requirements subject only to externally-imposed constraints.
- The SPIRIT study indicates that an affordable interferometer capable of making groundbreaking scientific discoveries can be developed for launch during the next decade.
- The SPIRIT design concept is flexible and can be adapted to meet the community's currently prioritized science goals.
- NASA's Astrophysics Roadmap recognizes the importance of multi-aperture interferometry and suggests we start in the far-IR.