

L3 Study: The LISA Gravitational Wave Detector

David Shoemaker, MIT L3 Study Group Chair 3 January 2017

What is LISA?

 LISA is the name of the proposed 'L3' ESA mission for a space-based gravitational-wave observatory

• L3 = ESA's third Large mission (JUICE is L1, Athena is L2)

- Uses laser interferometry to record gravitational-wave amplitude time series
- Studies very massive up to $10^7\,M_{\odot}$ astrophysical systems via their gravitational-wave emission
- Launch of 4-year nominal mission in early 2030's
- NASA L3ST is the Study Team supporting NASA's role in the ESA-Led mission
- Informing NASA on technical contributions, organizing astrophysics developments supporting the LISA mission
- Here: Status Update on the mission

A very welcome nudge from the Decadal Mid-term assessment

- RECOMMENDATION 4-4: NASA should restore support this decade for gravitational wave research that enables the U.S. community to be a strong technical and scientific partner in the European Space Agency (ESA)-led L3 mission, consistent with the Laser Interferometer Space Antenna's high priority in the 2010 report New Worlds, New Horizons in Astronomy and Astrophysics (NWNH).
- One goal of U.S. participation should be the restoration of the full scientific capability of the mission as envisioned by NWNH.

Credit: LISA L3 Mission Concept Proposal

LISA's reach for

Binary Black Holes

- Wide range of masses
 accessible
- Very high SNR (~1000) for 'nearby' (z ~3) mid-band binaries
- Can reach to cosmic dawn
- Can deduce
 - o Masses
 - o Distance
 - o Position
 - Polarization
 - Spin of components and final BH
 - Spin alignment, precession

Astrophysics with Binary Black Holes

- Study the formation and evolution of compact binary stars in the Milky Way Galaxy
- Understand the astrophysics
 of stellar origin black holes
- Joint gravitational and electromagnetic observations
 - Low-latency alerts for EM observation (1 day)
 - High-precision pointing information (1 deg²)
- Multi-band measurements with LISA and LIGO-like detectors

Credit: Sesana PRL 116, 1102

Fundamental Physics

- Precision study of ring-down characteristics of post-merger objects for consistency with GR
- Use extreme mass ratio inspiral (EMRI) binaries to explore the multipolar structure of massive black holes
- Test the propagation properties of GWs
- Constrain cosmological parameters through joint GW and EM observations
- Study stochastic gravitational wave backgrounds
 - Astrophysical -- measurement
 - Cosmological probably an upper bound
- Search for bursts, cusps and kinks of cosmic strings

Science-imposed mission performance; 4-year mission

LISA's place in the spectrum

LIGO and LISA

- LIGO's observation of gravitational waves→ observation principle works
- Existence of ~60 M_{\odot} BH confirmed
- Stellar BHs are more massive and more plentiful than we have assumed. Potential implications for EMRIs
- Multi-detector observation of binaries from LISA band to LIGO band assured

Credit: LISA L3 Mission Concept Proposal

Send/Receive Telescopes

- 30 cm Diameter
- Sends ~2 watts of 1 micron Nd:YAG light
- Receives ~100 pW from sister spacecraft

Gravitational Sensor (as flown on LISA Pathfinder)

LISA Pathfinder compared to LISA Mission requirements

Some requirements, specs

From the LISA L3 Mission Concept Proposal

Parameter	Value
Nominal mission duration	4 years
Extended mission duration	10 years
Orbits	3 heliocentric orbits
Transfer time	< 18 months
Range to Earth	50-65 Gm
Arm length	2.5 Gm
Number of Links	6 links/3 arms
Measurement Bandwidth	Req: $100 \ \mu \text{Hz} \le f \le 0.1 \text{Hz}$
	Goal: 20 μ Hz $\leq f \leq$ 1 Hz
S/C Power Requirements	$\leq 760 \mathrm{W}$
Laser Power	2 W (out of the fiber)
Telescope Diameter	30 cm
System wavefront quality	$\lambda/20 \text{ RMS}$
Data latency	< 1 day
Communication Needs	334 MB/day

Item	Mass [kg]
Ariane 6.4 Launch Capacity	7000.0
Total Launch Mass	6076.3
Stack and Launch Adapter	500.0
Wet Stack Mass	5576.3
Total Propellent	2050.0

- Nominal timeline, From ESA's Gravitational Observatory Assessment Team (GOAT) Final Report
- http://sci.esa.int/cosmic-vision/57910-goat-final-report-on-the-esa-l3gravitational-wave-mission/

Possible Faster Timeline

- From an unpublished GOAT Special Report, requested by ESA:
- What is the fastest credible schedule from a technical perspective?

Possible Faster Timeline

- From an unpublished GOAT Special Report, requested by ESA:
- What is the fastest credible schedule from a technical perspective?

Near-term priorities: Response to ESA Call

- ESA Call issued Oct 25, 2016
 - Mission to fulfill Gravitational Universe science theme
 - o 1.05B€ ESA cost cap, plus...
 - Contributions from EU states, and...
 - NASA Planning 20% contribution
- LISA consortium proposal in final editing, due Jan. 16, 2017
 - Selection May 2017
- Significant US participation in Consortium leadership and proposal, in both...
 - o Science, and...
 - Technology/Mission/Requirements

LISA Consortium website: http://www.elisascience.org ESA Mission Concept Call Page:

http://www.cosmos.esa.int/web/2016-l3-mission-call

Near-term priorities: Technology Development

- L3ST 'handing off' technology development to the new L3/LISA Study Office
- NASA will Build on past and ongoing work
 - Flight Projects
 - ST7 (Microthrusters & dynamic control systems)
 - LRI on GRACE-FO (Phase measurement & Longbaseline interferometry)
 - SR&T activities
 - Lasers, telescopes, thrusters, phasemeters, & optical structures.
- Hope some activity will go to the greater US
 LISA Community of Technologists!
- ESA stepping up also Invitations to Tender out
- Objective: attempt the earlier Timeline

Near-term priorities: Science Analysis Development

- Pursue new ideas in Science
 - Identify 'Science Gaps' where do we know we don't know things?
 - First draft of that in a (so-far) internal L3ST document
 - Talk with larger observational and theory community to identify common projects, joint observations, theories to confirm
- Raise the 'TRL level' of the simulation and analysis tools
 - Develop a common LISA analysis environment
 - Carry out detailed Mock LISA Data Challenges (MLDC)
 - Develop data quality tools from LPF, LIGO etc., EM experience
 - Where possible, share effort with other domains in GW and EM astronomy
- Support the Phase A iterations on the mission requirements
- Support the Technology Development as needed

- These are all core L3ST activities -

Near-term priorities: Science Advocacy

- Expand the community actively involved in LISA
 - Next L3ST in-person meeting Jan 31 afternoon (at APS meeting, DC)
 - Let me <u>dhs@mit.edu</u> know if you would like to attend https://pcos.gsfc.nasa.gov/studies/L3
- The current NASA L3ST and TAG:

John Baker, Pete Bender, Emanuele Berti, John Conklin, Neil Cornish, Curt Cutler, Kelly Holley-Bockelman, Scott Hughes, Shane Larson, Sean McWilliams, Cole Miller, Norna Robertson, David Shoemaker, Ira Thorpe, Michele Vallisneri, Jordan Camp, Bill Klipstein, Jeff Livas, Kirk McKenzie, Guido Mueller, John Ziemer

- Working closely with NASA HQ
- In the context of the ~340-person LISA Consortium

LISA: a completely new tool for the

astronomer's and astrophysicist's toolbox