An Astrophysical Transients Observatory Probe for Cosmology

Pete Roming (Southwest Research Institute®) on behalf of the ATO Probe Team*

January 3, 2017

(*with acknowledgements to Antonino Cucchiara and Nial Tanvir)

Probing the Early Universe

- Although massive stars are thought to be significant contributors to reionization [e.g. Alvarez et al. 2006, Ahn et al. 2012, Robertson et al. 2015], our understanding of them is limited.
- Some key questions about massive stars include:
 - What environments do they reside and how does the environment change as a function of redshift?
 - How do they die?
 - When does star formation transition from zerometallicity Pop III to Pop II dominated stars?
 - What is IMF for early Pop III and Pop II stars?

Using GRBs to Probe Early Stars

- GRBs may be the only way to observe these distant objects directly
 - JWST won't know where to look
 - Probability of finding one by chance extremely low
- Caveat: unclear that Pop III stars explode as GRBs
- If not, we will still see some of the earliest stars (Pop II)
 - GRB 090423 (z = 8.2)

GRBs are in the Early Universe

GRBs are Bright!

GRB Spectra Ideal for Probing

Non-thermal, smoothly joint broken power-law spectrum

GRBs are not powered by a hot gas in equilibrium, but are powered by accelerated relativistic electrons not in thermal equilibrium.

Determining Massive SFR with GRBs

- Most star formation at z>10 is in galaxies fainter than 1nJy
 - This is fainter that what the JWST can see
- GRBs select high-z galaxies independent of host galaxy luminosity

Determining Environments with GRBs

Afterglow spectroscopy provides z, HI column density of host, chemical abundances, dust, & info on intervening systems.

Probing Reionization with GRBs

- Multiple GRB Sight Lines Addresses:
 - When reionization began
 - When it ended
 - Is it consistent with other sources?
 - If not, why?
 - Is it smooth or patchy?

Is It a High-z GRB?

Current
missions
don't tell us
anything
about the
redshift

Problem with No "A Priori" Redshifts

First few GRB alerts

100th GRB alert

You want to interrupt my telescope time?!?

Problem with No A Priori Redshifts

GRB 050904

GRB	t _{Photo-z}	t _{Spectra-z}	z
050904	10 hrs	3.5 dys	6.3
080913	10 hrs	11 hrs	6.7
090423	7 hrs	24 hrs	8.2

GRB 090423

The Solution

Astrophysical Transients Observatory (ATO) Probe

Primary Goals

- Characterize the highest redshift massive stars and their environments
- Constrain the poorly understood explosion mechanism of massive stars

Primary Objectives

- Observe the first massive stars to explode as GRBs and probe their environments
- Observe the shock breakout of core collapse SNe to measure the outer envelope parameters

Secondary Objectives

- Type Ia SNe Shock Breakouts & Interactions
 - 361 (X-ray) and 81 (UV) shock interactions
- EM Counterparts to GW Sources
- Tidal Disruption Events
 - Most luminous TDEs with relativistic jets detected out to z~4-6 [e.g. Fialkov & Loeb 2016]
 - Directly probe frequency of BHs in galaxies where quasars begin to become extremely rare
 - Use max TDE redshifts vs. pop III GRBs to infer growth of BHs from stellar mass seeds to supermassive systems
- Cataclysmic Variables
- Flaring from Exoplanet Host Stars
- Ionizing Radiation Escape from Star-forming Galaxies

ATO Observatory

ATO observatory layout. The eight WFXT modules, NIRT, and MUVI are highlighted. The sunshade is also highlighted.

Wide-Field X-ray Telescope (WFXT)

- Energy band
 - 0.3-5 keV
- Telescope Type
 - Lobster
- Field-of-view
 - 801 sq-deg
- Positional accuracy
 - 10-105 arcsec
- Sensitivity
 - 3.2x10⁻¹¹ erg cm⁻² s⁻¹ (0.3-5 keV in 1500 s)

2 of 8 ATO-WFXT modules for localizing SBO events and high-z GRBs. The dimensions provided are in mm.

Near-IR Telescope (NIRT)

- Wavelength
 - 700-2000 nm
- Telescope Type
 - Ritchey-Chrétien
- Aperture
 - 55-cm
- Field-of-view
 - 1296 sq-arcmin
- Angular accuracy
 - <1 arcsec</p>
- Spectral resolution
 - ~16 & ~1000

Imaging Train (View rotated 90° and translated)

Optical layout of the NIRT showing the imaging (Direct; 0.7–2.0 µm), coarse resolution (R~16) short-wave (SWC; 0.7-1.35 µm) and long-wave (LWC; 1.35-2.0 µm) channels, and the R~1000 spectrograph. This design offers high throughput while providing arcsec-level imaging for GRB localization, rapid redshift determination, and spectroscopic follow-up.

Probing Environments of High-z GRBs

Afterglow spectrum (R \sim 1000) of GRB 050904 (z=6.29) taken 3.4 days after the burst. ATO-NIRT spectra (0.7-2.0 μ m) will yield host galaxy metal abundances out to the highest redshift, but at much earlier times when the afterglow is brightest. ATO will take us from our current status of 3 high-z bursts to \sim 200.

Multi-mode UV Instrument (MUVI)

- Wavelength
 - 115-350 nm
- Telescope Type
 - Ritchey-Chrétien
- Aperture
 - -1-m
- Field-of-view
 - 100 sq-arcmin
- Angular accuracy
 - ~1 arcsec
- Spectral resolution
 - ~3000

MUVI telescope, spectrograph, and imager design. This design offers high throughput while maintaining low-resolution spectroscopy and ~arcsecond-level imaging for SN localization, galactic characterization, and light curve follow-up.

MUVI FUV effective area. Through efficient design and modern componentry, the 1-m system provides comparable performance to the medium-resolution grating mode on HST-STIS (G140M). STIS has higher spectral resolution while MUVI has a factor of ~15 more spectral bandpass per exposure.

Performing the Investigation

ATO-NIRT images identify young, variable afterglows (upper 3 images), and objective prism exposures (lower images) yield redshifts via Ly-break at z≥5. Once high-z is ascertained R~1000 NIRT spectra are taken.