

The Habitable Exoplanet Imaging Mission (HabEx): Exploring our neighboring planetary systems.

Scott Gaudi (OSU – Community Chair) Sara Seager (MIT – Community Chair) Bertrand Mennesson (JPL – Center Study Scientist) Keith Warfield (JPL – Study Manager)

(Figures and slides stolen from Maggie Turnbull, Paul Hertz, Ty Robinson, Chris Stark, Paul Scowen, and probably others...)

The HabEx STDT. (mostly)

HabEx STDT Meeting, May 16-17 2016, Washington, DC. Team members from left to right: Rachel Somerville, David Mouillet, Shawn Domagal-Goldman, Leslie Rogers, Martin Still, Olivier Guyon, Paul Scowen, Kerri Cahoy, Daniel Stern, Scott Gaudi, Bertrand Mennesson, Lee Feinberg, Karl Stapelfeldt, Sara Seager, Dimitri Mawet. Missing STDT members (unable to attend meeting in person): Jeremy Kasdin, Tyler Robinson and Margaret Turnbull.

16 STDT Members, 3 Ex-officio Members, 5 International Observers, 8 Working Groups. http://www.jpl.nasa.gov/habex/

HabEx Study Goals.

• Highest-level goals:

"Develop an optimal mission concept for characterizing the nearest planetary systems, and detecting and characterizing a handful of ExoEarths."

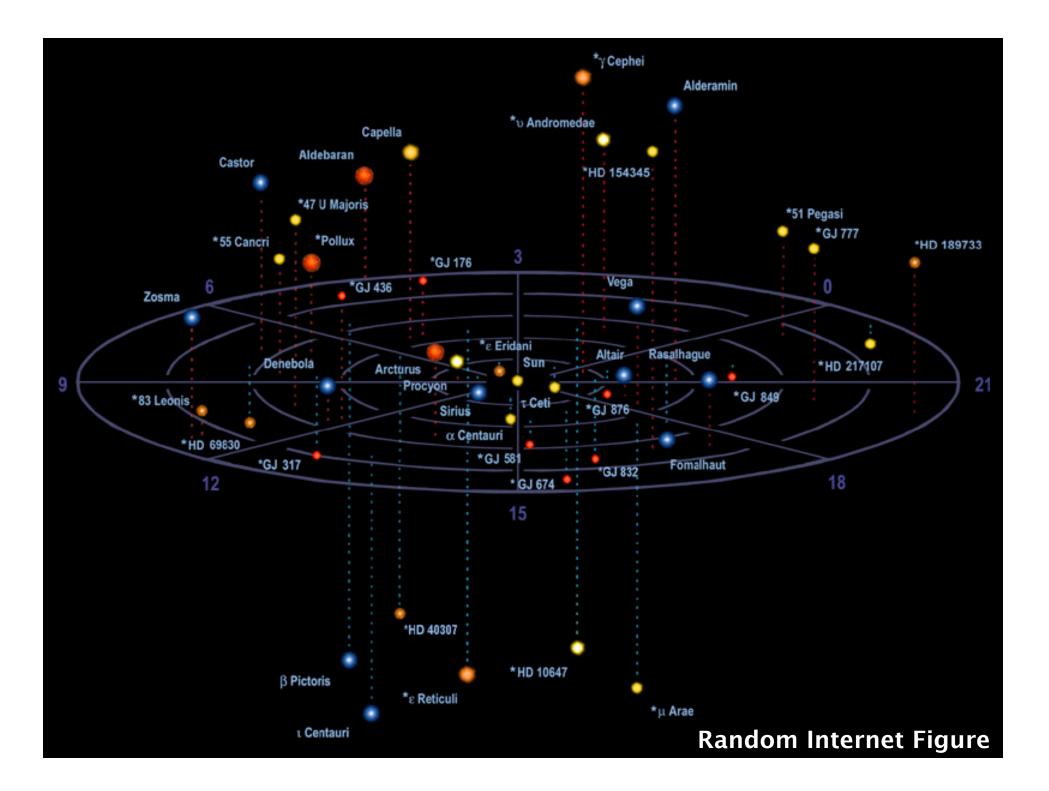
"Given this optimal concept, maximize the general astrophysics science potential without sacrificing the primary exoplanet science goals."

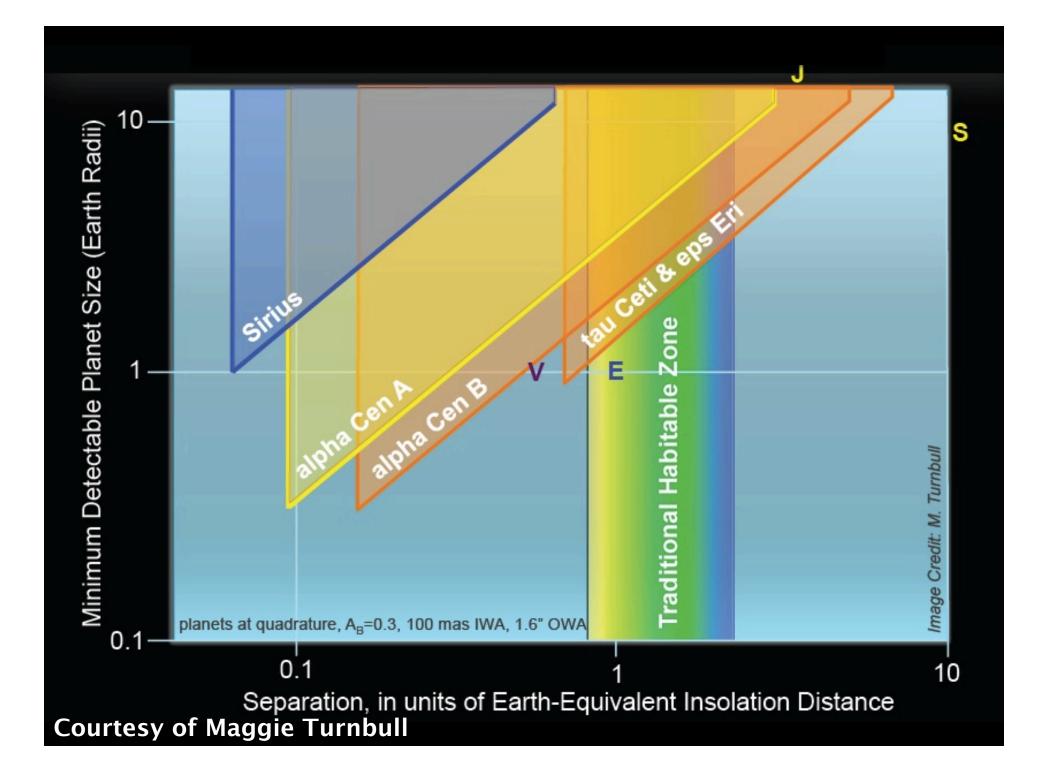
- Optimal means:
 - Maximizing the science yield while maintaining feasibility, i.e., adhering to expected constraints.
- Constraints include:
 - Cost, technology (risk), time to develop mission.
- Thus some primary lower-level goals include:
 - Identify and quantify what science yields are desired and optimal.
 - Identify and quantify the range of potential constraints.

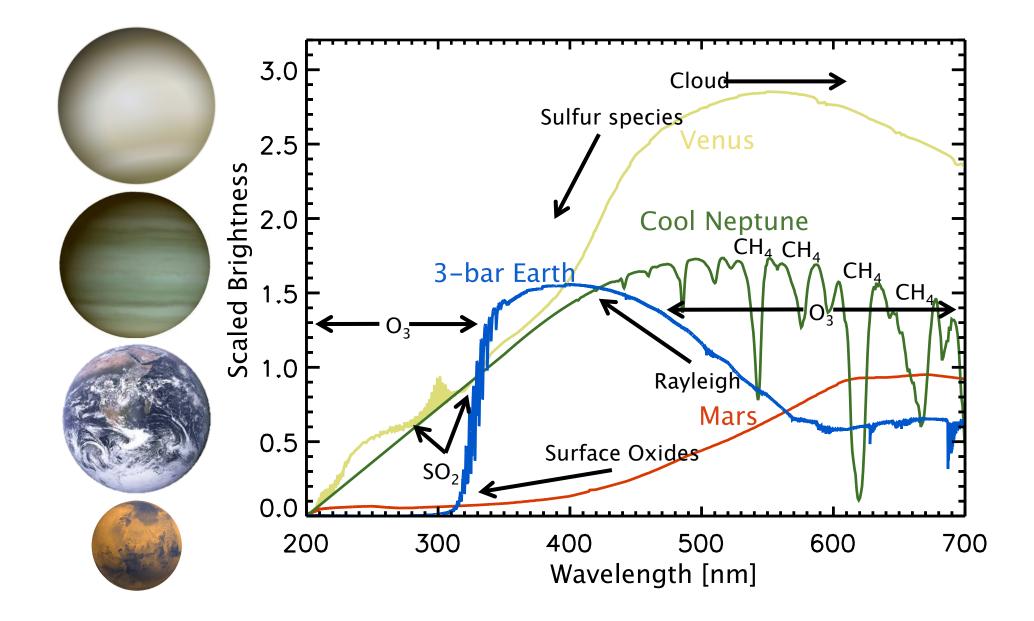
Previous Decadal Recommendations JPL

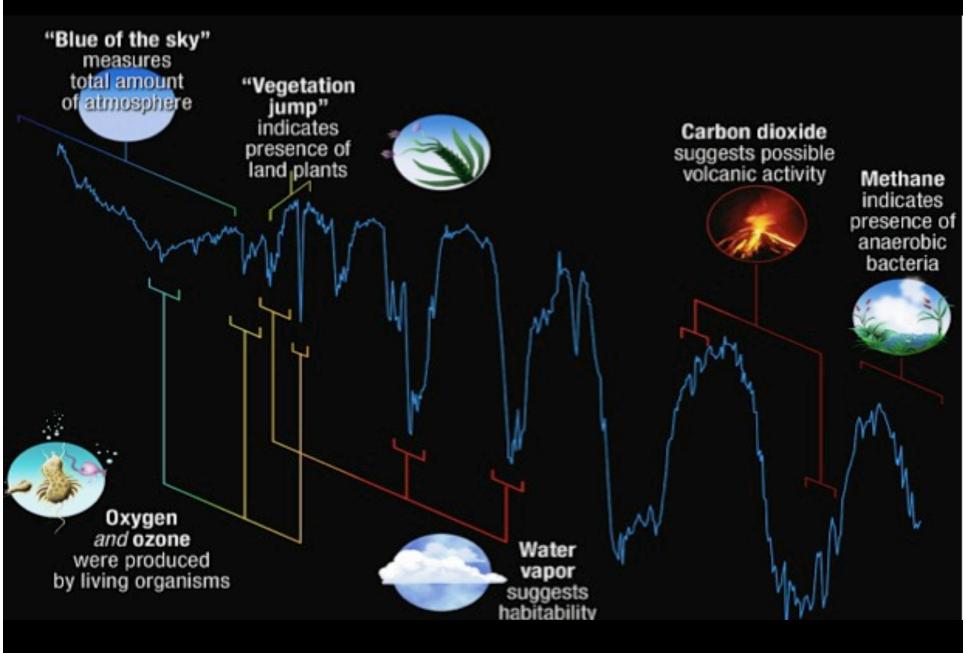
From Keith Warfield's study of past decadal missions:

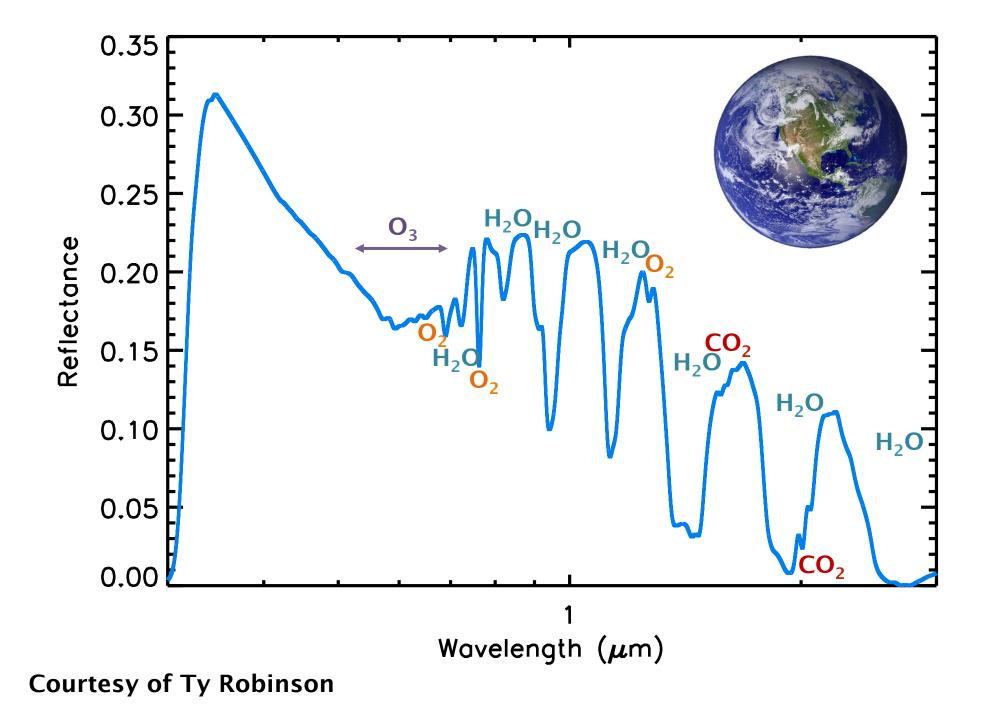
- "All past missions prioritized by the Decadal Survey were thought to be under \$3B"
- Only allowed ~3 tooth fairies.

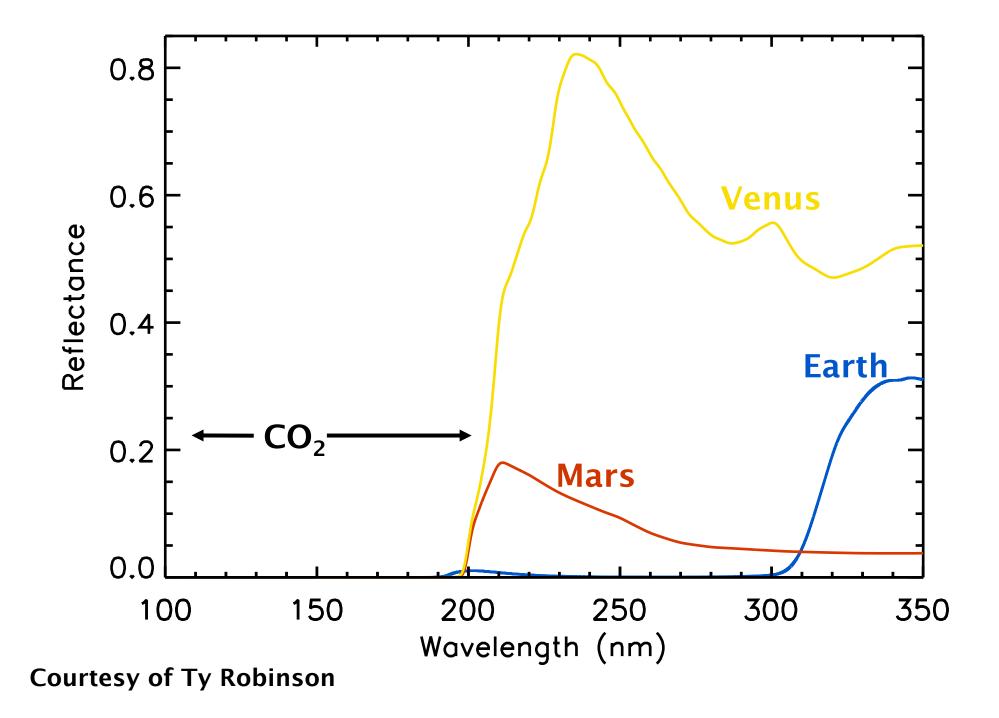

\$7.0B by 2035

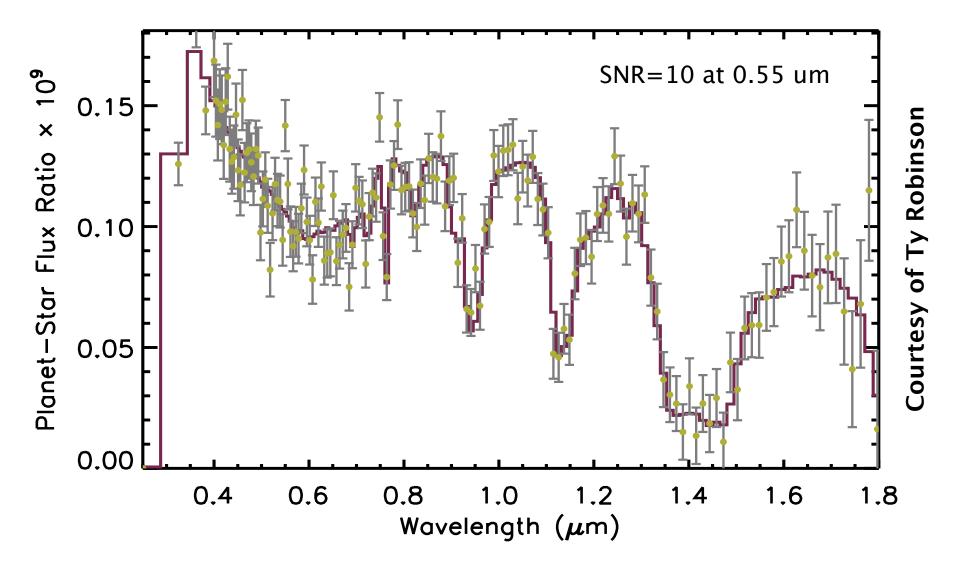



HabEx Science Goals.

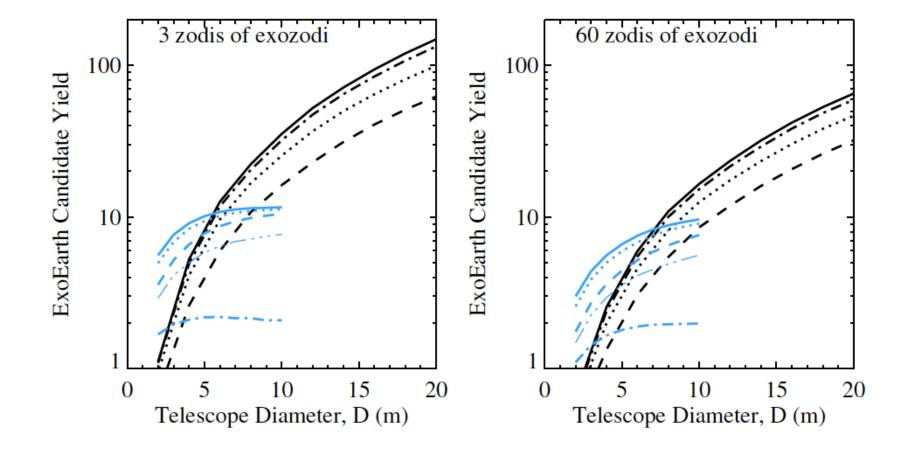

- Exploration-based:
 - How many unique planetary systems can we explore in great detail, determine "their story", including finding and characterizing potential habitable worlds?
 - HabEx will explore N systems as systematically and completely as possible.
 - Leverage abundant pre-existing knowledge about our nearest systems, acquire as much additional information as possible.
 - Take the first step into the unknown!
- Search for Potentially Habitable Worlds
 - Detect and characterize a handful of potentially habitable planets.
 - Search for signs of habitability and biosignatures.
- Optimized for exoplanet imaging, but will still enable unique capabilities to study a broad range of general astrophysics topics.





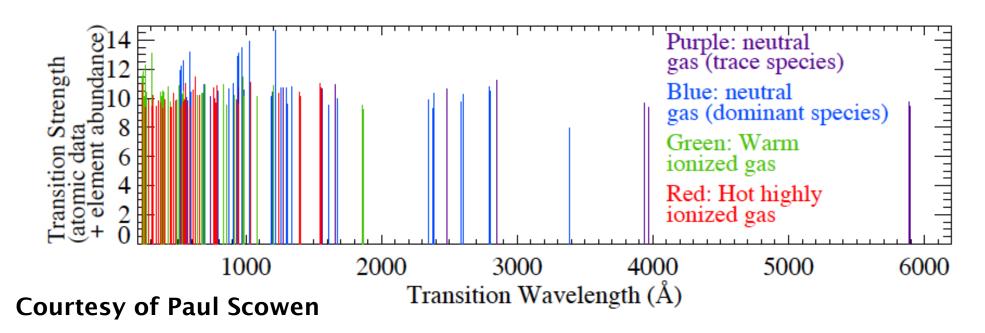

Courtesy of Ty Robinson

Courtesy of Maggie Turnbull



SNR=10 at 0.55µ,m 10⁻¹⁰ raw contrast Constant 30% throughput Integration time *per* bandpass 5m HabEx: 10 hr for a Earthlike planet at 5 pc 12m LUVOIR for a target at 12 pc. 5m HabEx: 30 hr at 7pc 12m LUVOIR: for a target at 17 pc.

Yields: ExoEarths


From Stark et al. 2016

General Astrophysics

- Consider what will be or has been available:
 - HST
 - JWST
 - Ground-based ELTs
- UV for >2.5m provides a novel capability

General Astrophysics Themes. JPL

- Hubble Constant
- Escape Fraction
- Cosmic Baryon Cycle
- Massive Stars & Feedback
- Stellar Archaeology
- Dark Matter

The Three Graces: Paul Scowen, Rachel Somerville, Dan Stern

Capabilities Matrix.

Science driver	observation	wavelength	spatial resolution	spectral resolution	FOV	aperture	effective aperture	exp. time	other
	image Cepheid variable	optical-near-IR (!.6							
Hubble Constant	stars in SN Ia host galaxies		diffraction limited	N/A	3'	>=4m		20 ks/galaxy	
	UV imaging of star	UV, preferably down	diffraction limited						
Escape Fraction	forming galaxies	to 912A	preferred	R ~ 1000-3000	few arcmin	>=4m		few ks/galaxy	
							>3x10^4 cm^2 in		
	spectroscopy of	UV, imaging down to					the UV - implies		
	absorption lines in	115nm sufficient,					10% (throughput +		MOS capabilities
	background QSO or			R=1,000-40,000			DQE) in the UV for		beneficial over a field as
Connia Domioni Cuelo	0	spectroscopy down to	10		10				
Cosmic Baryon Cycle	galaxies; UV imaging	92nm preferred	10mas	(grating turret)	10'	>6m	a 6m telescope	300-2000s	large as 20x20'
	UV imaging and								large number of broad,
	spectroscopy of massive	UV, 120-160nm							medium and narrow filter
	stars in the Galaxy and	spectroscopy; 110-	diffraction limited;						bands; spectroscopic
Massive Stars/Feedback	nearby galaxies	1000nm imaging	0.04" at 300nm	R=10,000	10-30'	>4m			angular resolution 5 mas
									this science can be done
									with smaller aperture
									telescopes, but a
	resolved photometry of								significant jump in
	individual stars in nearby							100	capability occurs at
Stellar Archaeology	galaxies	optical (500-1000nm)	diffraction limited	N/A	10'	4-8m		hours/galaxy	around 8m
	integrated photometry +								
	radial velocities and								
	proper motions of stars in								
	Local Group dwarf								astrometric accuracy of
Dark Matter	galaxies	optical (500-1000nm)	diffraction limited	?	10'	>=8m			<40 m arcsec/yr

-> UV Spectrometer and UVOIR imager.

The Three Graces: Paul Scowen, Rachel Somerville, Dan Stern

HabEx Design Team

Name	Role
Keith Warfield	Study Lead
Bertrand Mennesson	Study Center Scientist
Gary Kuan	Design Lead
Stefan Martin	Optics Lead
Joel Nissen	Systems & Structures; Stability
Rhonda Morgan	DRM & science yield
Stuart Shaklan	starshade & coronagraph expert
Doug Lisman	Starshade expert
David Webb	Starshade expert
Eugene Serabyn	coronagraph expert
John Krist	coronagraph expert
Alina Kiessling	associate center scientist
Bala Balasubramanian	coatings expert
Phil Stahl	MSFC – Telescope
Steve Warwick	Northrup Grumman – Starshade expert
Shouleh Nikzad	Detectors Lead
John Hennessy	detectors expert
Fang Shi	LOWFSC expert consultant

Architectures.

Property (Baseline)	Architecture #1	Architecture #2
Aperture	4m	6.5m
Primary Mirror	Monolithic, Al, f/2.5	Segmented (TBD)
Secondary Mirror	Off-axis	Off-axis (TBD)
Stabilization	Laser Metrology (M2)	TBD
Coatings	M1, M2, M3: Al	TBD
Coronagraph Instrument	HLC/VV6 Al (UV ?), Ag (OIR)	TBD
Wavelength (high contrast)	250nm-1.8µm	TBD
Wavelength (GA)	120nm–1.8µm (stretch 90nm–2µm)	TBD
Starshade	Yes, 75m (TBR) UVOIR	TBD
General Astrophysics Instrument #1	Workhorse UVOIR Camera (10 arcmin ² FOV, diff. limited at 400nm)	TBD
General Astrophysics Instrument #2	High Res; 60k UV Spectrograph, Microshutter arrays	TBD

Difference between LUVOIR and HabEx?

- Both LUVOIR and HabEx have two primary science goals
 - Habitable exoplanets & biosignatures
 - Broad range of general astrophysics
- The two architectures will be driven by difference in focus
 - For LUVOIR, both goals are on equal footing. LUVOIR will be a general purpose "great observatory", a successor to HST and JWST in the ~ 8 16 m class
 - HabEx will be optimized for exoplanet imaging, but also enable a range of general astrophysics. It is a more focused mission in the ~ 4 - 8 m class
- Similar exoplanet goals, differing in quantitative levels of ambition
 - HabEx will *explore* the nearest stars to "search for" signs of habitability & biosignatures via direct detection of reflected light
 - LUVOIR will *survey* more stars to "constrain the frequency" of habitability & biosignatures and produce a statistically meaningful sample of exoEarths
- The two studies will provide a continuum of options for a range of futures

Enhancing and Enabling Technologies for HabEx and LUVOIR

Technology	HabEx (4m)	HabEx (6.5m)	LUVOIR (9m/16m)
High-contrast Coronagraph on Segmented and/or Obscured Apertures	NR=Not Relevant	Enabling	Enabling
Ultra-low-noise UV Detectors	Enhancing	Enhancing	Enabling
Ultra-low-noise Visible Detectors	Enabling	Enabling	Enabling
Ultra-low-noise Near-IR Detectors	Enabling	Enabling	Enabling
UV-to-NIR Coatings	Enhancing	Enhancing	Enhancing
Large Optics Fabrication	Enabling	NR	NR
Starshade Technologies	Enabling	Enhancing	Enhancing
Large Format Deformable Mirrors	Enhancing	Enhancing	Enhancing
Thin Solar Films	Enhancing	Enhancing	Enhancing
Sub-nanometer Wavefront Stability	Enabling	Enabling	Enabling 20

Launch Vehicles Likely Required for HabEx and LUVOIR Designs

Mission Design	Falcon Heavy 5 m*	SLS 8.4 m
HabEx 4m	No?	Yes
HabEx 6.5m	Yes	No?
LUVOIR 9m	Yes	No
LUVOIR 16m	Νο	Yes

*Or similarly capable heavy-lift vehicle with an industry-standard 5-meter fairing.

Progress on Technological challenges

Need heavy lift launch vehicle with large fairing

Suitable vehicles (SLS and commercial) in development.

Compatibility of UV and coronagraphy

New lab work shows UV reflective mirrors are just fine for coronagraphy.

Ultra-high contrast observations with a segmented and/or obscured telescope

Coronagraphs can be designed for segmented telescopes. Working hard to demonstrate needed system stability.

Starshade technology development

Successful lab demonstrations of petal manufacturing accuracy and deployment, small scale field testing and model validation across various institutions.

<u> https://exoplanets.nasa.gov/exep/technology/TDEM-awards/</u>

Summary

Primary HabEx Science Goals:

- Develop an optimal mission concept for characterizing the nearest planetary systems, and detecting and characterizing a handful of ExoEarths.
- Enable a broad range of solar system and general astrophysics.

Our overall Approach:

• Maximizing the science yield while maintaining feasibility, i.e., adhering to expected constraints: cost, technology, risk, time to develop mission.

Considering Two Architectures:

- 4m monolith.
- 6.5m segmented.
- This is a complex region of trade space.

For the 4m Architecture:

 Three enabling technologies that need to be matured: starshade, low-noise IR detectors, sub-nm wavefront stability.