

Margaret Meixner Space Telescope Science Institute, Johns Hopkins University on behalf of the FIRS Science Technology Definition Team

asd.gsfc.nasa.gov/firs

NASA Mission concept for 2020 Decadal review; launch 2030ish

6 μm – 1000 μm (ish), Large aperture 8-15 m

Study Chairs: Margaret Meixner & Asantha Cooray

NASA Mission concept for 2020 Decadal review; launch 2030ish

10 μm – 1000 μm (ish), Large aperture 8-15 m Study Chairs: Margaret Meixner & Asantha Cooray

Comes from the NASA Astrophysics Roadmap, Enduring Quests, Daring Visions

Community Chairs:

Margaret Meixner, STSCI, Asantha Cooray, UC Irvine

NASA Study Center:

Goddard Space Flight Center (GSFC): Ruth Carter, David Leisawitz, Johannes Staguhn, Michael Dipirro, Anel Flores, Joseph Howard, James Corsetti, Andrew Jones, James Kellog, Louis Fantano

NASA Head Quarters (HQ) Program Scientists (non-voting):

Kartik Sheth and Dominic Benford

Ex officio non-voting representatives:

Susan Neff & Deborah Padgett, NASA Cosmic Origins Program Office; Susanne Alato, SNSB; Douglas Scott, CAS; Maryvonne Gerin, CNES; Itsuki Sakon, JAXA; Frank Helmich, SRON; Roland Vavrek, ESA; Karl Menten, DLR; Sean Carey, IPAC

Members appointed by NASA (> 90 applications):

Lee **Armu**s, NASA IPAC; Cara **Battersby**, Harvard-Smithsonian CfA; Edwin **Bergin**, University of Michigan; Matt **Bradford**, NASA JPL; Kim **Ennico-Smith**, NASA Ames; Gary **Melnick**, Harvard-Smithsonian CfA; Stefanie **Milam**, NASA GSFC; Desika **Narayanan**, University of Florida; Klaus **Pontopiddan**, STSCI; Alexandra **Pope**, University of Massachusetts; Thomas **Roellig**, NASA Ames; Karin **Sandstrom**, UC, San Diego; Kate Y. L. **Su**, University of Arizona; Joaquin **Vieira**, University of Illinois, Urbana Champaign; Edward **Wright**, UC Los Angeles; Jonas **Zmuidzinas**, Caltech

Community Chairs:

Margaret Meixner, STSCI, Asantha Cooray, UC Irvine

NASA Study Center:

Goddard Space Flight Center (GSFC): Ruth Carter, David Leisawitz, Johannes Staguhn, Michael Dipirro, Anel Flores, Joseph Howard, James Corsetti, Andrew Jones, James Kellog, Louis Fantano

NASA Head Quarters (HQ) Program Scientists (non-voting):

Kartik Sheth and Dominic Benford

Far-IR Surveyor STDT Meeting NASA's Goddard Space Flight Center May 12 - 13, 2016

Tracing the signatures of life and the ingredients of habitable worlds

Origins will trace the trail of water from interstellar clouds, to proto-planetary disks, to Earth itself facilitating understanding of the abundance and availability of water for habitable planets.

Unveiling the Growth of Black Holes and Galaxies over Cosmic Time

Origins will reveal the coevolution of super-massive black holes and galaxies, energetic feedback, and the dynamic interstellar medium from which stars are born.

Origins will trace the metal enrichment history of the Universe, probe the first cosmic sources of dust, the earliest star formation, and the birth of galaxies.

Charting the Rise of Metals, Dust, and the First Galaxies

Origins will chart the role of comets in delivering water to the early Earth, and conduct a survey of thousands of ancient Trans Neptunian Objects (TNOs) in the outer reaches of the Solar System.

Characterizing Small Bodies in the Solar System

Telescope Parameters

Aperture Diameter	FOV	Diffraction Limited at	Temperature
8-15 m	0.5-1 square degree	40 µm	~4 K

Potential Wavelength Coverage from 5 µm–1 mm

	Instrument Specifications				
	Wavelength Coverage	Spectral Resolution	Field of view	Typical Required	
Instrument	μm	(λ/Δλ)	#spatial pixels	Sensitivity:	Other

Instrument Specifications					
	Wavelength	Spectral		Typical	
	Coverage	Resolution	Field of view	Required	
Instrument	μm	(λ/Δλ)	#spatial pixels	Sensitivity:	Other
Low-Res		low-res~500	100 per	10 ⁻²¹ W/m ²	
Spectrometer	35 to 500	high-res~10 ⁴	channel	(spectral line)	multi-channel

Instrument Specifications					
	Wavelength	Spectral		Typical	
	Coverage	Resolution	Field of view	Required	
Instrument	μm	(λ/Δλ)	#spatial pixels	Sensitivity:	Other
Low-Res		low-res~500	100 per	10 ⁻²¹ W/m ²	
Spectrometer	35 to 500	high-res~10 ⁴	channel	(spectral line)	multi-channel
		low-res ~			
		8x10 ⁴		10 ⁻²¹ W/m ² 5	
High-Res		high-		σ	photo-
Spectrometer	50 to 500	res~5x10⁵	100	(spectral line)	counting

K SX

Instrument Specifications					
	Wavelength	Spectral		Typical	
	Coverage	Resolution	Field of view	Required	
Instrument	μm	(λ/Δλ)	#spatial pixels	Sensitivity:	Other
Low-Res		low-res~500	100 per	10 ⁻²¹ W/m ²	
Spectrometer	35 to 500	high-res~10 ⁴	channel	(spectral line)	multi-channel
		low-res ~			
		8x10 ⁴		10 ⁻²¹ W/m ² 5	
High-Res		high-		σ	photo-
Spectrometer	50 to 500	res~5x10⁵	100	(spectral line)	counting
					polarized,
Heterodyne				2 mK in 0.2	background
Spectrometer	150 to 500	~107	10 - 100	km/s @ 1 THz	limited

NASA

Instrument Specifications					
	Wavelength Coverage	Spectral Resolution	Field of view	Typical Required	
Instrument	μm	(λ/Δλ)	#spatial pixels	Sensitivity:	Other
Low-Res		low-res~500	100 per	10 ⁻²¹ W/m ²	
Spectrometer	35 to 500	high-res~10⁴	channel	(spectral line)	multi-channel
High Doc		low-res ~ 8x10 ⁴ bigb		10 ⁻²¹ W/m ² 5	nhoto
Figur-Res Spectrometer	50 to 500	111g11-	100	0 (spectral line)	counting
Heterodyne Spectrometer	150 to 500	~107	10 - 100	2 mK in 0.2 km/s @ 1 THz	polarized, background limited
Far-infrared imager	35 to 500	R~15	100,000	1 μJy - 10 mJy (confusion limit)	5 to 10 channels, polarimetry, spectral line filters

NASA

Instrument Specifications					
	Wavelength	Spectral		Typical	
	Coverage	Resolution	Field of view	Required	
Instrument	μm	(λ/Δλ)	#spatial pixels	Sensitivity:	Other
Low-Res		low-res~500	100 per	10 ⁻²¹ W/m ²	
Spectrometer	35 to 500	high-res~10 ⁴	channel	(spectral line)	multi-channel
		low-res ~			
		8x10 ⁴		10 ⁻²¹ W/m ² 5	
High-Res		high-		σ	photo-
Spectrometer	50 to 500	res~5x10⁵	100	(spectral line)	counting
					polarized,
Heterodyne				2 mK in 0.2	background
Spectrometer	150 to 500	~107	10 - 100	km/s @ 1 THz	limited
					5 to 10
					channels,
				1 μJy - 10 mJy	polarimetry,
Far-infrared				(confusion	spectral line
imager	35 to 500	R~15	100,000	limit)	filters
		imager: R~15,			coronagraph~
Mid-Infrared		spectrometer:		photometric:	10^-6 @ 0.5"
Instrument	6 to 40	R>500	106	1 μJy @10 μm	@ 10 μm

New Science Requires New Technologies

New Technology	New Capability
Space	Wavelength coverage JWST<—>ALMA
Cold Mirror	Spectroscopic line sensitivity
Large Telescope	Spatial resolution and sensitivity
Large Detector Arrays	Wide field imaging
Compact Gratings & Integrated Spectrometers	3D mapping
Mid-IR Coronagraph	Exoplanet+Disk Characterization

Bradford

Technical Definition: Telescope Design

Technical Definition: Telescope Design

Technical Definition: JWST Segment 56 m² Area

Technical Definition: Secondary & Shade

ORIGINS
Space TelescopeTechnical
Telescope

Technical Definition: Telescope Temperature

Melnick

STDT Schedule

• January to July 2017:

- Complete preliminary designs for telescope and instruments
- Secure instrument design contributions
- Identify technology drivers

• August to September 2017

- Define required technologies
- Complete preliminary mission design
- January to March 2018:
 - Finalize Telescope and Instrument Designs
 - Finalize mission design including spacecraft bus
- April to August 2018:
 - Identify de-scope options
 - End-to-end Mission cost estimations
- January 2019:
 - Submit the final study report to NASA HQ
- March 2019:
 - Far-IR Study Results presentation to Decadal Committee

How do I get involved?

What's happending now:

- Five science working groups: membership is open to the community (US and foreign)
- Deciding on science questions in the post-JWST, 15 years of ALMA operations in an era of Extremely Large Telescope (ELT) and guiding instrument and telescope design.

Solar System: Stefanie Milam

Planet Formation and Exoplanets: Klaus Pontoppidan and Kate Su Milky-Way, ISM and Local Volume of Galaxies: CaranBattersby and Karin Sandstrom Galaxy and Blackhole Evolution Over Cosmic Time: Lee Armus and Alexandra Pope First Billion Years: Joaquin Vieira, Matt Bradford