The Colorado Ultraviolet Transit Experiment (CUTE)

COPAG SiG2 splinter AAS 8 January 2018

University of Colorado:

Kevin France (PI), Brian Fleming (PS), Rick Kohnert (PM), Nicholas Nell, Arika Egan, Kelsey Pool, Stefan Ulrich

United States:

Tommi Koskinen (UoA), Matthew Beasley (SwRI), Keri Hoadley (Caltech)

Europe:

Jean-Michel Desert (Amsterdam), Luca Fossati (ÖAW), Pascal Petit (UdT), Aline Vidotto (TCD)

Laboratory for Atmospheric and Space Physics University of Colorado **Boulder**

Extreme exoplanetary systems: new regimes of planetary physics and star-planet interactions

•Introduction:

•The detection and prevalence of exoplanetary systems

•Planet systems unlike the solar system

•Planetary atmospheres unlike the solar system

<u>Extrasolar Planets</u>: N_{plan}(2018) ~3500 Confirmed

$\sim \! 175 \times N_{plan}(1999)$

Direct Imaging

The Extrasolar Planet Zoo

The Extrasolar Planet Zoo

Hot Jupiter

Super-Earth

WASP-18b, solar-type host $M \sim 10 M_J, R \sim 1.1 R_J$ $a \sim 0.02 AU$ $T_{eff} \sim 2400 - 3100 K$ (Hellier et al. 2009)

GJ 832c, red dwarf host $M sin(i) \sim 5.2 M_E, R \sim 1.7 R_E$ $a \sim 0.16 AU$ $T_{eff} \sim 230 - 280 K$ (Wittenmyer et al. 2014)

Extreme exoplanetary systems: new regimes of planetary physics and star-planet interactions

•Introduction:

•The detection and prevalence of exoplanetary systems

•Planet systems unlike the solar system

•<u>Planetary atmospheres unlike</u> <u>the solar system</u>

EXOPLANET ATMOSPHERES

•Narrow-band/spectroscopic transit analysis can probe absorption by specific atmospheric constituents

Occultation Depth = $(R_P / R_*)^2$

EXOPLANET ATMOSPHERES

•Narrow-band/spectroscopic transit analysis can probe absorption by specific atmospheric constituents

Occultation Depth = $(R_{P}(\lambda) / R_{*})^{2}$

Transit Spectroscopy: in-transit vs. out-of-transit

Composition
Temperature structure
Velocity flows
Mass-loss rates

Transit Spectroscopy of Short-period Planets

EUV heating driving mass-loss from short-period planets

•Most spectacular example has been on the shortperiod Neptune-mass planet GJ 436b

Hydrogen detected in the upper atmosphere of GJ436b (Kulow et al. 2014; Ehrenreich et al. 2015; Bourrier et al. 2016)

Transit depth ~ 50% (!)

(but no metal outflow - Loyd et al. 2017...or maybe there is...Lavie et al. 2017)

NUV Transit Spectra of WASP-12b: Early Ingress

Fossati et al. (2010); Vidotto et al. (2010)

NUV Transit Spectra of WASP-12b: Early Ingress

Interaction between stellar wind and planetary magnetic field may cause compression. (Vidotto et al. 2010, 2011) Interaction strength depends on relative velocity and coronal/wind density and temperature

NUV Transit Spectra of WASP-12b: Early Ingress

- Llama et al. (2011), Vidotto et al. (2010):
 - Potential detection of a magnetic field around WASP-12b.
 - Magnetosphere protects the atmosphere to ~5 Rp.
 - Bp ~ 24 Gauss

Not the only interpretation:

- Hydrodynamic mass-loss may support an upstream shock (Lai et al. 2010)
- Accretion stream onto the star ahead of the motion (Bisikalo et al. 2013)
- Plasma torus from satellites (Ben-Jaffel & Ballester 2014; Kislyakova et al. 2016)
- CLOUDY modeling finds compressed stellar winds produce insufficient optical depth, arguing for the planetary mass-loss explanation (Turner et al. 2016)

•Rarely get the same transit result twice: time-variability in the star(?), planetary mass-loss rate (?), or apples-vsoranges observations and data reduction algorithms

•Sample size of mass-loss measurements ~5, earlyingress observations ~1

•Stellar baseline for transit measurements

•Rarely get the same transit result twice: time-variability in the star(?), planetary mass-loss rate (?), or apples-vsoranges observations and data reduction algorithms

\rightarrow multiple, consecutive transits, single data pipeline

•Sample size of mass-loss measurements ~5, earlyingress observations ~1

•Stellar baseline for transit measurements

•Rarely get the same transit result twice: time-variability in the star(?), planetary mass-loss rate (?), or apples-vsoranges observations and data reduction algorithms

\rightarrow multiple, consecutive transits, single data pipeline

•Sample size of mass-loss measurements ~5, earlyingress observations ~1

 \rightarrow dedicated platform

•Stellar baseline for transit measurements

•Rarely get the same transit result twice: time-variability in the star(?), planetary mass-loss rate (?), or apples-vsoranges observations and data reduction algorithms

\rightarrow multiple, consecutive transits, single data pipeline

•Sample size of mass-loss measurements ~5, earlyingress observations ~1

 \rightarrow dedicated platform

•Stellar baseline for transit measurements

 $\rightarrow \pm$ 0.25 phase coverage

•Rarely get the same transit result twice: time-variability in the star(?), planetary mass-loss rate (?), or apples-vsoranges observations and data reduction algorithms

\rightarrow multiple, consecutive transits, single data pipeline

•Sample size of mass-loss measurements ~5, earlyingress observations ~1

 \rightarrow dedicated platform

•Stellar baseline for transit measurements

 $\rightarrow \pm$ 0.25 phase coverage

•Self-consistent modeling framework

→ state-of-the-art, physically self-consistent models

Survey of ~12-24 short-period transiting planets around nearby stars:

- 1) Atmospheric mass-loss
- 2) Exoplanet magnetic fields?

CUTE: A NEW APPROACH TO ATMOSPHERIC MASS-LOSS MEASUREMENTS

Almost all detections of atmospheric mass loss have been carried out in the FUV (e.g. Vigal-Madjar+ 2004, 2013, Linsky+ 2010, Ben-Jaffel+ 2007, 2013, Kulow+ 2014, Ehrenrich+ 2015)

- Controversial interpretation due to low-S/N and uncertain chromospheric intensity distribution (e.g., Llama & Shkolnik 2015).
- The NUV has both a more uniform, mainly photospheric, intensity distribution AND an overall brighter background for transit observations.

Llama & Shkolnik 2015, 2016

CUTE: A NEW APPROACH TO ATMOSPHERIC MASS-LOSS MEASUREMENTS

Krivova et al. 2006

- Almost all detections of atmospheric mass loss have been carried out in the FUV (e.g. Vigal-Madjar+ 2004, 2013, Linsky+ 2010, Ben-Jaffel+ 2007, 2013, Kulow+ 2014, Ehrenrich+ 2015)
- Controversial interpretation due to low-S/N and uncertain chromospheric intensity distribution (e.g., Llama & Shkolnik 2015).
- The NUV has both a more uniform, mainly photospheric, intensity distribution AND an overall brighter background for transit observations, ~100-500x brighter.

CUTE: A NEW APPROACH TO ATMOSPHERIC MASS-LOSS MEASUREMENTS

Survey of ~12-24 short-period transiting planets around nearby stars:

 Atmospheric mass-loss & Variability

 heavy elements will be entrained in the rapid H & He outflow, getting 'pulled' out of the planet and into the circumplanetary envelope: Mg, Fe, molecules, continuum absorption?

Survey of ~12-24 short-period transiting planets around nearby stars:

Atmospheric mass-loss
 Exoplanet Magnetic Fields?

Light curve asymmetry to distinguish between magnetic and mass-loss supported bow shocks

Contemporaneous measure of stellar B-field enables calculation of planetary magnetic field -- potential to discover and quantify exoplanetary magnetism

DEDICATED SMALL SPACE MISSIONS: Astronomy with Cubesats

- CUTE: First NASA funded UV/O/IR astronomy cubesat
 - Halosat X-ray cubesat (P. Kaaret, Univ. Iowa)
 - More widely used in Earth observing, education, and solar physics (e.g. CSSWE, MinXSS Mason et al. 2017)

Source: Radius Space Systems

radius.space

ASTERIA - JPL

CUTE Telescope

See CUTE design overview in Fleming et al. (2017)

Geometric clear area for a 20 x 8 cm cassegrain: $A_T \sim 152 \text{ cm}^2$

 $A_{T,r}/A_{T,c} = 3.2x$ more collecting area! (requires robust scattered light control)

Source: Nu-Tek Precision Optics

Geometric clear area for a 9cm Cassegrain: $A_T \sim 47 \text{ cm}^2$

CUTE Science Instrument

See CUTE design overview in Fleming et al. (2017)

CUTE Science Instrument

CUTE Predicted Performance

20 x 8 cm Telescope: $A_{eff} = A_T R^5 \epsilon_{grat} QE_D = 25-30 cm^2$ Performance relative to GALEX NUV Grism:

 $A_{eff,CUTE}/A_{eff,GALEX} = \sim 60-70\%$ $R_{CUTE}/R_{GALEX,NUV} = 40x$ Angular Resolution: Similar

CUTE Predicted Performance

CUTE will achieve > 3σ detections of transits as low as 0.1% depth for the brightest targets, and < 1% for all baseline targets with 5+ lightcurves per target:

 \succ Transit sensitivity to 0.7% depth for median target over 1 transit

Capable of detecting geometric transit and atmospheric transit

CUTE Example Target Visibility List

PI – France

CUTE Calibration and Operations at the University of Colorado

Student Training at the University of Colorado

CUTE Science Team, Oct 2017

CUTE Status

- Proposed Roses D.3 APRA March 2016
- Selected Feb. 2017
- Funding Started in July 2017
- First Science Team face-to-face meeting: Oct 2017
- Adorable logo creation: Winter 2017-18
- Launch Q1/Q2-2020
 - 7 Month Baseline mission:
 - 12 exoplanetary systems, 6-10 transits each
 - 12 20 additional systems in 12 month extended mission

CUTE Science Instrument

See CUTE design overview in Fleming et al. (2017)

EXOPLANET ATMOSPHERES

•Spectroscopic transit analysis can probe absorption by specific atmospheric constituents

Wavelength (µm)