SPHEREX: An All-Sky Spectral Survey

Designed to Explore

The Origin of the Universe The Origin and History of Galaxies The Origin of Water in Planetary Systems

The First All-Sky **Near-IR Spectral Survey**

A Rich Legacy Archive for the Astronomy Community with 100s of Millions of Stars and Galaxies

Low-Risk Implementation

 Single Observing Mode No Moving Parts Large Technical & Scientific Margins

What are the Most Important Questions in Astrophysics?

As Stated in the NASA 2014 Science Plan

How Did the Universe Begin?

"Probe the origin and destiny of our universe, including the nature of black holes, dark energy, dark matter and gravity"

How Did Galaxies Begin?

"Explore the origin and evolution of the galaxies, stars and planets that make up our universe"

What are the Conditions for Life Outside the Solar System?

"Discover and study planets around other stars, and explore whether they could harbor life"

SPHEREx Creates an All-Sky Legacy Archive

A spectrum for every 6" pixel on the sky

All-Sky surveys demonstrate high scientific returns with a lasting data legacy used across astronomy

> COBE IRAS GALEX WMAP Planck WISE

SPHEREx Overview

- 20 cm telescope effective diameter
- $3.5^{\circ} \times 7^{\circ}$ field of view
- 6.2" pixel size
- + $0.75 5 \ \mu m$ wavelength range
- $\lambda/\Delta\lambda$ = 40-135 resolving power

Note: SMEX configuration parameters given throughout

Wide-Field Linear Variable Filter Spectroscopy

- No moving parts
- Space-proven method
- Spectra produced by pointing the spacecraft
- Complete spectral sky survey every 6 months

How Did the Universe Begin?

SPHEREx observes the 3D distribution of galaxies, uses Non-Gaussianity to probe inflation physics

How Do We Probe Inflation Physics? Observables

Inflationary gravitational waves – CMB "B-mode" polarization Spectral index of fluctuations – CMB and large-scale structure **Non-Gaussianity** – Sensitive to **Inflaton field** (single- or multi-field)

$$\phi = \phi_{linear} + f_{NL} \phi^2_{linear}$$

CMB:
$$f_{NL} < 10.8 (2\sigma)$$

Local f_{NL}; Planck 2015 results

Large-Scale Structure will give best non-Gaussianity measurements $f_{NI} = +1000$ $f_{NI} = 0$

Non-Gaussianity appears on largest spatial scales – need large volume survey

SPHEREx Large Volume Galaxy Survey

SPHEREx Large-Volume Redshift Catalog

- Largest effective volume of any survey, near cosmic limit
- Excels at z < 1, complements dark energy missions (Euclid, WFIRST) targeting z ~ 2
- SPHEREx + Euclid measures gravitational lensing and calibrates Euclid photo-zs

Survey Designed for Two Tests of Non-Gaussianity

- Large scale power from **power spectrum**: large # of low-accuracy redshifts
- Modulation of fine-scale power from **bispectrum**: fewer high-accuracy redshifts

SPHEREx Tests Inflationary Non-Gaussianity

- Projected SPHEREx sensitivity is $\Delta f_{NL} < 0.5 (1\sigma)$
 - Two independent tests via power spectrum and bispectrum
- Competitively tests running of the spectral index
- SPHEREx low-redshift catalog is complementary for dark energy

How Did Galaxies Begin?

Contributions to the Extragalactic Background Light

SPHEREx extragalactic background light measurements determine the total light emitted by galaxies

Measuring Cosmic Light Production

Two Ways to Measure Cosmic Light Production

What Constitutes Cosmic Light Production?

Individual Galaxies & Redshifts
 Large telescope for point source sensitivity

 Large-Scale Patterns in the Background
 Small telescope with fidelity on degree scales

→ the amplitude of large-scale (clustering)
fluctuations proportional to total light production

- sr' 10 CIBER (nW m⁻² **IHL** Template 10⁰ SPHEREX $(100 \times 1\sigma \text{ MEV errors})$ 2000 10-AKAR V 10^{-2} Scientific EOR 0 Obj V 500 10^{-3} MEV Perf. .⊆ D₁^{1/2} 10 3 Wavelength (μ m)
 - 1) Photon Production in Galaxies

Nucleosynthesis & black holes, peaks at z \sim 2

- **2) First Stars and Galaxies** Epoch of Reionization z > 6
- 3) Intra Halo Light

Tidally stripped stars at z = 0 - 2

4) Surprises?

Large Scale Structure Herschel-SPIRE Lockman Survey Field

What Are the Conditions for Life Outside the Solar System?

Sourced by <u>interstellar ices</u>, rich in biogenic molecules: H₂O, CO, CO₂, CH₃OH... Current debate: did earth's water come from the Oort cloud, Kuiper belt or closer? Did water arrive from the late bombardment (~500 MY) or before?

SPHEREx will measure the H_2O , CO_2 , CH_3OH ice content in clouds and disks, determining how ices are inherited from parent clouds vs. processed in disks

SPHEREx Surveys Ices in All Phases of Star Formation

SPHEREx All-Sky Spectral Survey

Archive Science Opportunities: A Few Examples

Object	# Sources	Legacy Science	Reference
Detected galaxies	1.4 billion	Properties of distant and heavily obscured galaxies	
Galaxies σ(z)/(1+z) < 0.03	120 million	Study (H, CO, O, S, H ₂ O) line and PAH emission by galaxy type. Explore galaxy and AGN life cycle	Simulation based on COSMOS and
Galaxies σ(z)/(1+z) < 0.003	10 million	Cross check of Euclid photo-z. Measure dynamics of groups and map filaments.	rail-31AKK3
QSOs	> 1.5 million	Understand QSO lifecycle, environment, and taxonomy	Ross et al.
QSOs at z > 7	1-300	Determine if early QSOs exist. Follow-up spectro- scopy probes EOR through Lya forest	(2013) plus simulations
Clusters with ≥ 5 members	25,000	Redshifts for all eRosita clusters. Viral masses and merger dynamics	Geach et al., 2011, SDSS counts
Main sequence stars	>100 million	Test uniformity of stellar mass function within our Galaxy as input to extragalactic studies	2MASS catalogs
Mass-losing, dust forming stars	Over 10,000 of all types	Spectra of M supergiants, OH/IR stars, Carbon stars. Stellar atmospheres, dust return rates, and composition of dust	A.Cox (2015) p. 527
Brown dwarfs	>400, incl. >40 of types T and Y	Atmospheric structure and composition; search for hazes. Informs studies of giant exoplanets	dwarfarchives. org and J.D. Kirkpatrick, priv. comm.
Stars with hot dust	>1000	Discover rare dust clouds produced by cataclysmic events like the collision which produced the Earth's moon	Kennedy & Wyatt (2013)
Diffuse ISM	Map of the Galaxy	Study diffuse emission from interstellar clouds and nebulae; (H, CO, S, H ₂ O and PAH emission)	GLIMPSE survey (Churchwell et al. 2009)

1.3 trillion voxels per survey!

How Does SPHEREx Advance My PAG's Science?

PhysPAG: Test Inflationary Birth of the Universe

Archive • Low-z galaxy redshift survey complements Euclid & WFIRST

- Tests of large-scale gravitation via growth of structure & lensing
- Find X-ray counterparts in eROSITA all-sky survey

ExoPAG: Survey Ices in Early Stages of Planet Formation

Archive IR spectro-photometry on Kepler & TESS host stars
 Survey 10⁸ stars - disks, hot dust, brown dwarfs, etc

COPAG: Galaxy Evolution via Clustering Fluctuations

Archive • Survey for z > 7 quasars

- Survey 10⁸ galaxies
- Galaxy cluster spectra with X-ray and mm-wave data

What Would You Do with the SPHEREx Archive?

SPHEREx science paper: Doré *et al.* arXiv 1412.4872 (82 citations)

SPHEREx Archive Community Workshop Feb 2016, California Institute of Technology

Charter: Identify new science, tools and data products Attended by over 50 non-SPHEREx scientists **White paper:** Doré *et al.* arXiv 1606.07039 (84 pp, 68 authors)

Astrophysics with the SPHEREx All-Sky Spectral Survey

A Community Workshop on the Scientific Synergies Between the SPHEREx Survey and Concurrent Astronomical Observatories

January 30-31, 2018

Harvard-Smithsonian Center for Astrophysics

SPHEREx AAS poster session Thursday!

Thanks for Listening!

SPHEREX Science Team

CfA

JPL

JPL

KASI

KASI

CfA

KASI

CfA

JPL

JPL

RIT

UCSD

Caltech

Arizona State

JHU

JPL

CfA

IPAC

Jamie Bock Matt Ashby Peter Capak **Asantha Cooray Elisabeth Krause Brendan Crill Olivier Doré Chris Hirata** Woong-Seob Jeong **Phil Korngut** Dae-Hee Lee Phil Mauskopf **Gary Melnick Roland dePutter Yong-Seon Song Harry Teplitz Volker Tolls Steve Unwin Mike Werner** Mike Zemcov

Lindsey Bleem Roger Smith Tim Eifler Salman Habib Katrin Heitmann **Karin Sandstrom Carey Lisse Daniel Masters Hien Nguyen Karin Oberg Rogier Windhorst** Caltech/JPL **Principal Investigator** Interstellar ices Galaxy redshifts UC Irvine Extragalactic backgrounds JPL/U. Arizona Cosmology Pipeline architect **Project Scientist Ohio State** Cosmology KASI PI **Instrument Scientist** Caltech Instrumentation Arizona State Survey planning Interstellar ices Cosmology Caltech Cosmology **IPAC/Caltech** Data Archive Ices pipeline Interstellar ices Legacy science Data pipeline Argonne Galaxy clusters Caltech **Detector arrays** JPL/U. Arizona LSST/DESI synergies Argonne **Cosmology simulations Cosmology simulations** Argonne

Star formation

Instrumentation

Ice properties

JWST synergies

Spectral redshift fitting

Solar system

spherex.caltech.edu

STATE

Backup

High-Throughput LVF Spectrometer

LVFs used on ISOCAM, HST-WFPC2, New Horizons LEISA, and OSIRIX-Rex Spectra obtained by stepping source over the FOV in multiple images: **no moving parts**

High-Throughput LVF Spectrometer

LVFs used on ISOCAM, HST-WFPC2, New Horizons LEISA, and OSIRIX-Rex

How Does LVF Spectroscopy Compare?

Speed \equiv 1/(time to map full sky to $\delta F = 10^{-18} \text{ Wm}^{-2}$)

 Speed means how quickly an instrument maps the sky to detect a line at a fixed wavelength

Power $\equiv \int$ Speed (d λ/λ)

 Power means how quickly an instrument maps the sky to detect a line over a log spectral band

SPHEREx performs well, especially in IR

- despite power scaling with telescope diameter as d²
- large throughput (AΩ product)
- photon noise limited with low space backgrounds

Measuring Primordial Non-Gaussianity to $\sigma(f_{NL}) < 1$

A test to distinguish between single- and multi-field Inflation

Single-Field Inflation:

Non-Gaussianity Produces Two Signatures

Enhanced power on large spatial scales Φ_{L}

Modulated small-scale power Φ_s on large scales Φ_L due to non-linear mode coupling

- measured with power spectrum and bispectrum

Redshifts with SPHEREx

We extract the spectra of *known* sources using the full-sky catalogs from <u>PanSTARRS/DES</u>. Controls blending and confusion

We compare this spectra to a template library (robust for low redshift sources): For each galaxy: redshift & type Multiple types test galaxy bias effects

The 1.6 μm bump is a well known universal photometric indicator (Simpson & Eisenhardt 99)

We simulated this process using the COSMOS data set using the same process as Euclid/WFIRST (Capak et al.).

The power of low-resolution spectroscopy has been demonstrated with PRIMUS (Cool++14), COSMOS (Ilbert++09), NMBS (van Dokkum++09).

Testing Redshift Reliability

Inject Real Galaxies into SPHEREx Pipeline

Example Template and Redshift Fits

SPHEREx Measures Large-Scale Fluctuations

- SPHEREx has ideal wavelength coverage and high sensitivity
- Multiple bands enable correlation tests sensitive to redshift history
- Method demonstrated on Spitzer & CIBER

- Emission lines encode clustering signal at each redshift over cosmic history
- Amplitude gives line light production
- Multiple lines trace star formation history
 - High S/N in H α for z < 5; OIII and H β for z < 3
 - Ly α probes EoR models for z > 6

Relating Galaxies to Dark Matter

Dark Matter from Numerical Simulation (z = 2)

Dark Matter Clumps Color-Coded by Mass

Large scales: Light traces dark matter Med scales: Non-linear clustering Small scales: Poisson fluctuations Measure light production Galaxy formation within a halo Galaxy counts

Why Study Ices?

Gas and dust in molecular clouds are the reservoirs for new stars and planets

- In molecular clouds, water is 100-1000x more abundant in ice than in gas
- Herschel observations of the TW Hydrae disk imply the presence of 1000s of Earth oceans in ice (Hogerheijde *et al.* 2011)
- Models suggest water and biogenic molecules reside in ice in the disk mid-plane and beyond the snow line
- Ideal λs to study ices: 2.5 5 μm
- Includes spectral features from H₂O, CO and CO₂
- Plus chemically important minor constituents NH₃, CH₃OH, X-CN, and ¹³CO₂

Schematic of a protoplanetary disk

ISO absorption spectrum

SPHEREx Galactic Ice Survey

Inject Simulated Ice Sources into Pipeline

Estimate Errors on Absorption Depth

Reliable Columns of Ice Species

Expect ~1 Million High-Quality Ice Detections

