

How will the recommendations from Astro2020 factor into APD's technology planning?

- APD will respond to the Astro2020 Committee publicly on which of the recommendations it will commence first and expected timelines.
 - ☐ Preliminary response within a couple months of the released Astro2020 report
 - Completed Implementation Plan targeting Dec 2021
- A list of technology needs will then be updated and re-prioritized.
- APD will decide which technology development activities will be directed and competed.
 - ☐ A community-wide RFI is planned to be released to gather a wide range of information pertaining to the Astro2020 recommendations such as new innovations, approaches, architectures, and qualified sources.
 - ☐ The SAT solicitation can be part of a competed approach reflecting space mission priorities and longer-term technology development.

How can the astrophysics community participate in technology planning and development?

- Review our current technology gaps and propose new ones during the open solicitation period.
 - Technology Gaps and Technology Gap Form: https://apd440.gsfc.nasa.gov/technology.html
 - ☐ Jan 8 June 1 (will defer if Astro2020 report is released later than mid-May)
- Respond to the community-wide RFI.
 - □ Released within two months of the public Astro2020 report
- Propose to the SAT element of the ROSES-2021 solicitation (pending NASA's plans in response to the Astro2020 recommendations).
 - □ ROSES-2021 solicitation ~ 2/14/21
 - □ Amendment to ROSES-2021 expected ~ 9/16/21 will confirm the SAT solicitation
 - ☐ If confirmed, NOI's due ~ 10/22/21 and proposals due ~ 12/16/21

NASA Astrophysics Technology Needs

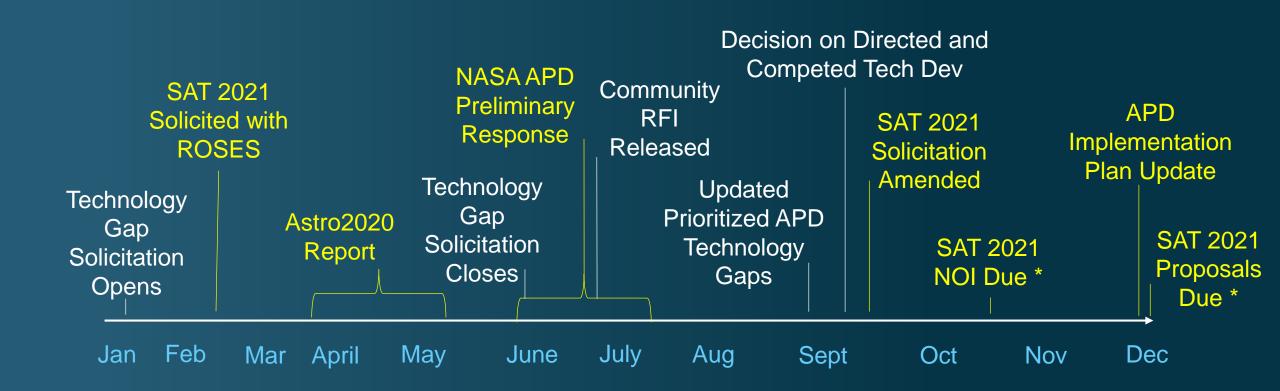
https://apd440.gsfc.nasa.gov/technology.html

Tier 1 Technology Gaps		
Angular Resolution (UV/Vis/NIR)		
Coronagraph Contrast		
Coronagraph Contrast Stability	The O Technology Occur	
Cryogenic Readouts for Large-Format Far-IR Detectors	Tier 3 Technology Gaps	
Fast, Low-Noise, Megapixel X-Ray Imaging Arrays with Moderate Spectral Resolution	Advanced Cryocoolers High-Performance, Sub-Kelvin Coolers	
High-Efficiency X-Ray Grating Arrays for High-Resolution Spectroscopy	Large Cryogenic Optics for the Mid-IR to Far-IR	
High-Resolution, Large-Area, Lightweight X-Ray Optics	Long-Wavelength-Blocking Filters for X-Ray Micro-Calorimeters	
Large-Format, High-Resolution, UV/Vis Focal Plane Arrays	Low-Noise, High-QE UV Detectors	
Large-Format, High-Spectral-Resolution, Small-Pixel X-Ray Focal-Plane Arrays	Low-Stress, Highly Stable X-Ray Reflective Coatings	
Large-Format, Low-Noise and Ultralow-Noise Far-IR Direct Detectors	Photon-Counting, Large-Format UV Detectors	
Large-Format, Low-Noise, High-QE Far-UV Detectors	Polarization-Preserving Millimeter-Wave Optical Elements	
Next-Generation, Large-Format, Object Selection Technology for Multi-Object Spectrometers for LUVOIR	UV Coatings UV Detection Sensitivity	
Vis/NIR Detection Sensitivity	UV/Vis/NIR Tunable Narrow-Band Imaging Capability	
10,111	Warm Readout Electronics for Large-Format Far-IR Detectors	
Tier 2 Technology Gaps	WdIII Ticadout Electronics for Earge Format Fall in Distriction	
Advanced Millimeter-Wave Focal-Plane Arrays for CMB Polarimetry	Tier 4 Technology Gaps	
Detection Stability in Mid-IR	Compact, Integrated Spectrometers for 100 to 1000 µm	
Heterodyne FIR Detector Arrays and Related Technologies	Optical-Blocking Filters	
High-Efficiency Object Selection Technology for UV Multi-Object Spectrometers	Rapid Readout Electronics for X-Ray Detectors	
High-Performance Spectral Dispersion Component/Device	Short-Wave UV Coatings	
High-Reflectivity Broadband FUV-to-NIR Mirror Coatings		
High-Throughput Bandpass Selection for UV/Vis	Tier 5 Technology Gaps	
Large-Format Object Selection Technology for Multi-Object Spectrometers for HabEx	Advancement of X-Ray Polarimeter Sensitivity Far-IR Spatio-Spectral Interferometry	
Starshade Deployment and Shape Stability	High-Precision Low-Frequency Radio Spectrometers and Interferometers	
Starshade Starlight Suppression and Model Validation	Mid-IR Coronagraph Contrast	
Stellar Reflex Motion Sensitivity – Astrometry	Ultra-High-Resolution Focusing X-Ray Observatory Telescope	
Stellar Reflex Motion Sensitivity – Extreme Precision Radial Velocity	Very-Wide-Field Focusing Instrument for Time-Domain X-Ray Astronomy	
	Wide-Bandwidth, High-Spectral-Dynamic-Range Receiving System for Low-Radio-Frequency Observations on the Lunar Far Side	

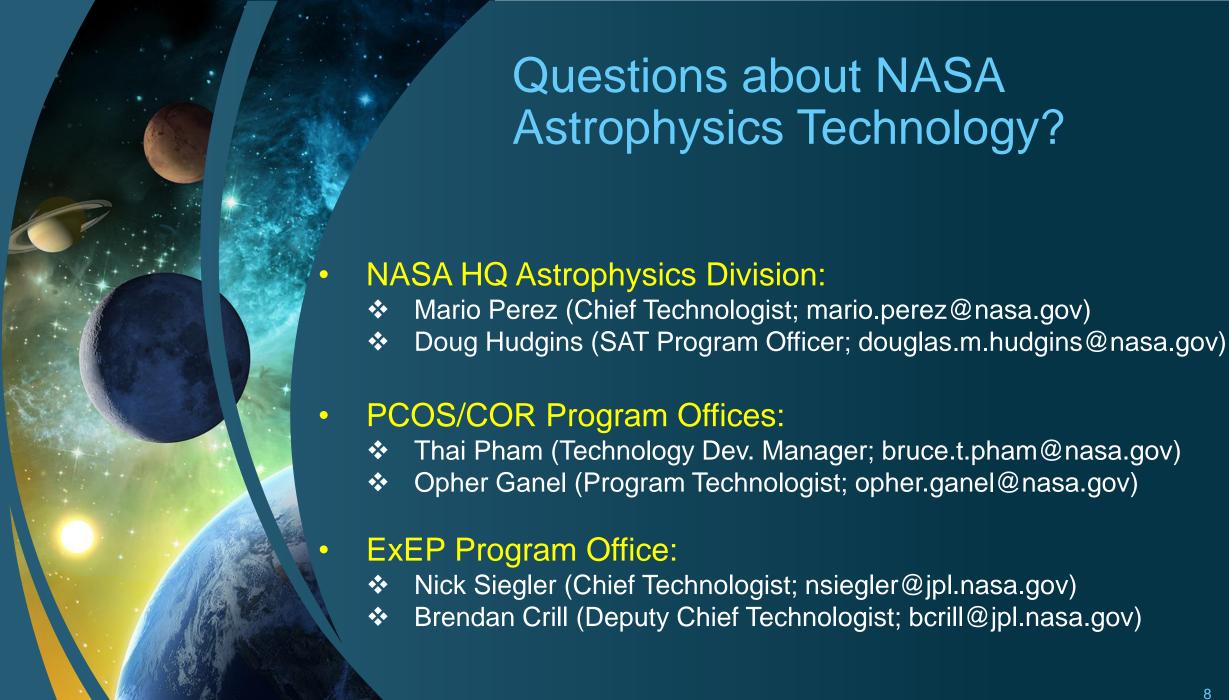
- Technology gap descriptions and prioritization are published in the ABTR.
- A revised Report will come out ~ October incorporating Astro2020 recommendations.

Green: An STDT identified technology

NASA Astrophysics Technology Needs (an Example)


Tier 1 Technology Gaps				
Angular Resolution (UV/Vis/NIR)				
Coronagraph Contrast				
Coronagraph Contrast Stability				
Cryogenic Readouts for Large-Format Far-IR Detectors				
Fast, Low-Noise, Megapixel X-Ray Imaging Arrays with Moderate Spectral Resolution				
High-Efficiency X-Ray Grating Arrays for High-Resolution Spectroscopy				
High-Resolution, Large-Area, Lightweight X-Ray Optics				
Large-Format, High-Resolution, UV/Vis Focal Plane Arrays				
Large-Format, High-Spectral-Resolution, Small-Pixel X-Ray Focal-Plane Arrays				
Large-Format, Low-Noise and Ultralow-Noise Far-IR Direct Detectors				
Large-Format, Low-Noise, High-QE Far-UV Detectors				
Next-Generation, Large-Format, Object Selection Technology for Multi-Object Spectrometers for LUVOIR				
Vis/NIR Detection Sensitivity				

https://apd440.gsfc.nasa.gov/tech_gap_priorities.html


Gap Name	Description	Current State-of-the-Art	Performance Goals and Objectives
Angular Resolution (UV/Vis/NIR)	The capability to resolve the habitable zones of nearby star systems in the UV/Vis/NIR band, with a large space telescope.	Monolith: 3.5-m sintered SiC with < 3 μm SFE (Herschel); 2.4-m ULE with ~10 nm SFE (HST); Depth: Waterjet cutting is TRL 9 to 14", but TRL 3 to >18". Fused core is TRL 3; slumped fused core is TRL 3 (AMTD). Segmented: (no flight SOA): 6.5 m Be with 25 nm SFE (JWST); Non-NASA: 6 DOF, 1-m class SiC and ULE, < 20 nm SFE, and < 5 nm wavefront stability over 4 hr with thermal control	Large (4–16 m) monolith and multi-segmented mirrors for space that meet SFE < 10 nm rms (wavelength coverage 400–2500 nm); Wavefront stability better than 10 pm rms per wavefront control time step; CTE uniformity characterized at the ppb level for a large monolith; Segmented apertures leverage 6 DOF or higher control authority meterclass segments for wavefront control.
Coronagraph Contrast	The capability to suppress starlight with a coronagraph to the level needed to detect and spectrally characterize Earth-like exoplanets in the habitable zones of Sun-like stars.	unobscured pupil: 6×10-10 raw contrast at 10% bandwidth, angles of 3-15 J/D (HLC demo in HCIT); obscured pupil: 1.6×10-9 raw contrast at 10% bandwidth across angles of 3-9 J/D (WFIRST)	Maximized science yield for a direct imaging telescope/mission. ≤ 10 ⁻¹⁰ raw contrast, >10% throughput, IWA ≤ 3 λ/D, obscured/segmented pupil

Planned 2021 Technology Timeline

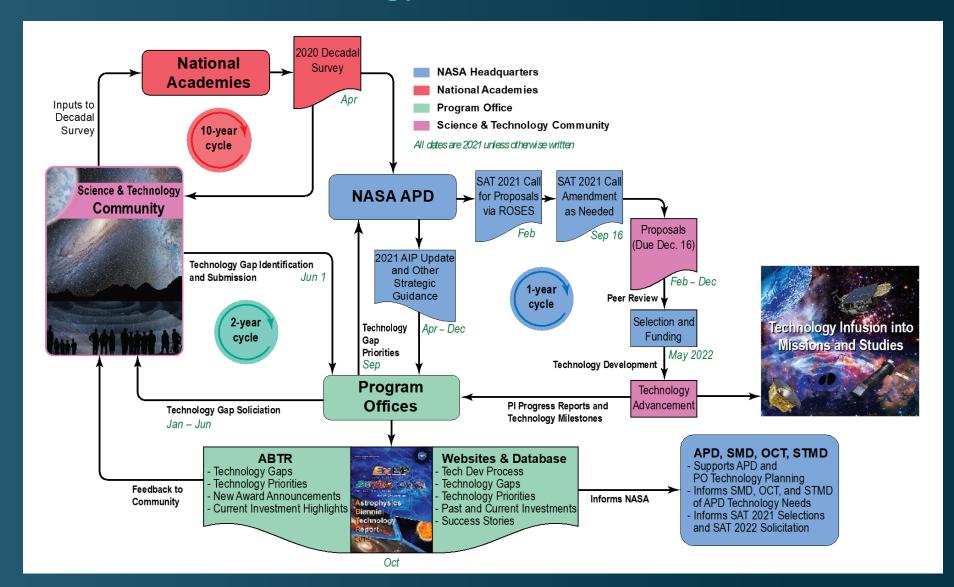
Always consult NSPIRES for actual dates (https://nspires.nasaprs.com/)

^{*} Contingent on SAT amendment in Sept 2021

Estimated Key Technology Dates in 2021

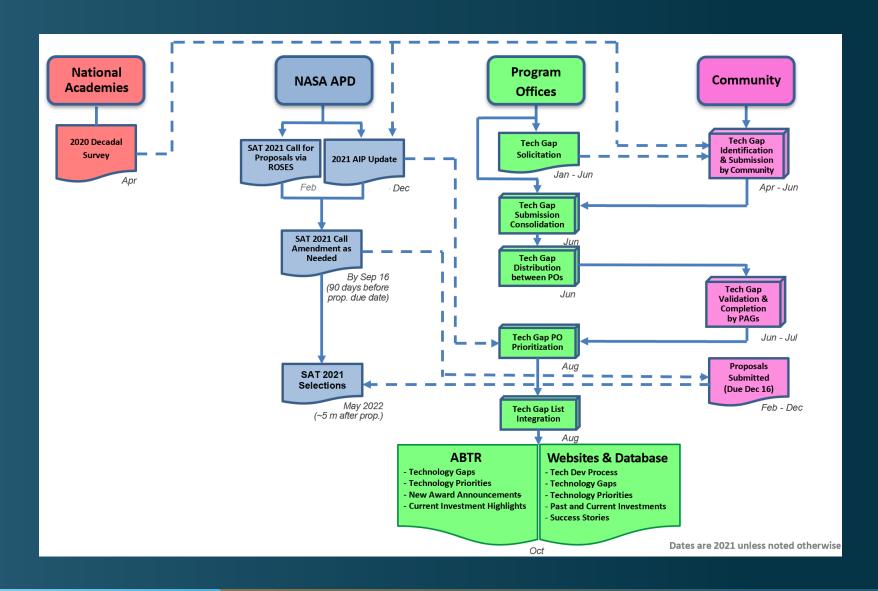
(If Astro2020 is released after mid-May some dates will change; always consult NSPIRES for actual dates (https://nspires.nasaprs.com/))

- Technology gap* submission deadline
- Community-wide technology RFI released
- Updated technology gaps posted
- ABTR** 2021 with new gap priorities published
- SAT 2021 solicitation (ROSES)
- SAT 2021 solicitation amendment
- Pending SAT 2021 amendment:
 - ❖ NOI's due
 - Proposals due


- ~ June 1
- ~ June-July
- ~ September 16
- ~ mid-October
- ~ February 14
- ~ September 16
- ~ October 22
- ~ December 16

^{*} Current gaps, priorities, and submission form with instructions available at https://apd440.gsfc.nasa.gov/tech_gap_priorities.html

^{**} ABTR: Astrophysics Biennial Technology Report 2019 available at https://apd440.gsfc.nasa.gov/technology.html


Additional Material

Technology Advancement Flow

Dates are best estimates

Technology Gap Prioritization and SAT Flow

Dates are best estimates

APD Technology Gaps by STDT

Technology Gap Name		
Vis/NIR Detection Sensitivity	HabEx	
Starshade Starlight Suppression and Model Validation	HabEx	
Starshade Deployment and Shape Stability	HabEx	
Large-Format Object Selection Technology for Multi-Object Spectrometers for HabEx		
Low-Noise, High-QE UV Detectors		
Photon-Counting, Large-Format UV Detectors		
Short-Wave UV Coatings	HabEx	
Coronagraph Contrast Stability	LUVOIR	
Angular Resolution (UV/Vis/NIR)	LUVOIR	
Coronagraph Contrast	LUVOIR	
Large-Format, Low-Noise, High-QE Far-UV Detectors	LUVOIR	
Large-Format, High-Resolution, UV/Vis Focal Plane Arrays	LUVOIR	
Next-Generation, Large-Format, Object Selection Technology for Multi-Object Spectrometers for LUVOIR	LUVOIR	
High-Reflectivity Broadband FUV-to-NIR Mirror Coatings	LUVOIR	
UV Detection Sensitivity	LUVOIR	
UV Coatings	LUVOIR	
Fast, Low-Noise, Megapixel X-Ray Imaging Arrays with Moderate Spectral Resolution	Lynx	
Large-Format, High-Spectral-Resolution, Small-Pixel X-Ray Focal-Plane Arrays		
High-Efficiency X-Ray Grating Arrays for High-Resolution Spectroscopy		
High-Resolution, Large-Area, Lightweight X-Ray Optics	Lynx	
Low-stress, Highly Stable X-Ray Reflective Coatings	Lynx	
Long-Wavelength-Blocking Filters for X-Ray Micro-Calorimeters	Lynx	
Large-Format, Low-Noise and Ultralow-Noise Far-IR Direct Detectors	Origins	
Cryogenic Readouts for Large-Format Far-IR Detectors	Origins	
Heterodyne FIR Detector Arrays and Related Technologies	Origins	
Detection Stability in Mid-IR	Origins	
Large Cryogenic Optics for the Mid IR to Far IR	Origins	
High-Performance, Sub-Kelvin Coolers	Origins	
Advanced Cryocoolers	Origins	
Warm Readout Electronics for Large-Format Far-IR Detectors	Origins	
Compact, Integrated Spectrometers for 100 to 1000 µm		
Mid-IR Coronagraph Contrast	Origins	