A LANDSCAPE FOR FAR-INFRARED GALACTIC ASTRONOMY OVER THE NEXT DECADE EDWIN BERGIN

UNIVERSITY OF MICHIGAN

THE FAR-IR FUTURE: GALACTIC ASTRONOMY

LOOKING OUTWARD

- Extragalactic water assumed to trace star formation via far-IR pumping of emission lines (Gonzalez-Alfonso 2008, 2010, 2012).
- Galaxy tells us that water emission is tracing shocked gas from outflows which relates to accretion and its luminosity (Kristensen & Bergin 2020).
- Water vapor lines are complex (emission/absorption) require high spectral resolution.

LOOKING INWARD

- Water is the KEY volatile in planet-formation.
 - The water content and its trail is the central link in understanding the formation of a habitable world.
 - ightarrow Cannot be readily done from the ground.
- The total disk gas mass is the central quantity for planet formation.
 - Provides the grounding information needed to trace content and link to exoplanets.
 - Traditional probes (dust and CO) differ by over 1-2 orders of magnitude based on > 100 disks via ALMA surveys.
 - ightarrow We don't know the disk gas mass.

LOOKING INWARD

- JWST will survey hot (> 300 K) water vapor emission from inner few au in numerous systems.
- What is missing is the cold (tens of K) to warm (200 K) water vapor that is probed by far-IR this can provide information on the snowline location
- Water ice has emission features in the far-IR at \sim 40 and 63 µm that uniquely trace bulk ice content.
- Herschel only provided a handful of detections of both vapor and ice.
- Critical information for understanding of water supply in planet formation.

Bergin+ 2013; McClure+ 2016; Kama+ 2019

- \Rightarrow HD 1-0 emission provides an independent tracer of the H₂ gas mass.
- Only 3 existing Herschel detections that are spatially and spectrally unresolved.
- Sensitive Far-IR instrument could survey hundreds to thousand of disk systems and provide needed information to interpret all JWST/ ALMA observations of disk systems.

WE NEED A FUTURE

- At the baseline level we want to survey (large areas of the galaxy or a wide number of sources):
 - What is needed is a large aperture cooled space telescope with large spectral grasp, multiple pixels, and high spectral resolution.
 - Some aspects of this science case can be captured at reduced levels by SOFIA (CII, OI) or probe class missions with targeted lines and science cases. (e.g. cold water lines).

LOOKING OUTWARD

2 examples -> (can give many more)

CO SLEDS

Kamenetzky et al. 2012 see also Indriolo et al. 2017

Need to obtain spectral maps and understand physics!
Requires high sensitivity, large spectral grasp, multiple pixels, high spectral resolution