Coronagraphy **UVSTIG**

Emiel H. Por^{*} (STScI) Bertrand Mennesson (Caltech/JPL)

January 9th, 2023

* NHFP Sagan Fellow

Exoplanet yield

LUVOIR-A report (2019), Fig. 1-7

HWO Starlight Suppression System MUSTs

Detailed requirements yet to be derived. But from previous studies and Astro2020 language:

- Must reach a minimum point source detection limit <u>Amag > 25 at < 70 mas</u> from FGK star
 - That's 2.1 λ /D for λ =950 nm and D= 6m (4 λ /D at 500nm)
 - Requires raw contrast of a few 10⁻¹⁰ there, with "high" throughput & bandwidth >~ 20%.
- Must spectrally characterize detected exo-Earth candidates over a broad spectral range to
 - Search for Rayleigh scattering, water vapor and oxygen ightarrow 500-950 nm
 - Search for low levels of oxygen \rightarrow down to 250-300 nm
 - Search for methane and carbon dioxide ightarrow up to 1700 nm

Terminology and design metrics

- Raw contrast
- Planet throughput
- Inner working angle
- Field of view
- Spectral bandwidth
- Robustness to stellar diameter
- Robustness to low-order aberrations
- Optical complexity
- Integration with wavefront sensing

(LUVOIR A) preliminary Fogarty et al. 2022

> PAPLC (LUVOIR A) preliminary Por 2020

Coronagraphic instrument layout

Corsetti et al. 2020

Coronagraphic instrument layout

Corsetti et al. 2020

Coronagraphs current lab performance: segmented apertures

Phase Apodized Pupil Lyot Coronagraph

PAPLC coronagraph

Segmented pupil (DM by IrisAO)

Boston Micromachines (2x 952 actuators)

Thorlabs

University of Arizona Nano Fabrication Center

Por et al. in prep.

PAPLC coronagraph

- Monochromatic at 638nm
- Unpolarized light
- Unobscured segmented aperture

- 2×10⁻⁸ from 2 13 λ/D
- 8×10⁻⁹ from 4 13 λ/D

Por et al. in prep.

Maintaining the contrast

Differential imaging on HiCAT

HiCAT Dark Hole long exposure

Differential imaging with reference from independent run

Data acquisition: Por; data processing: Pueyo

Phase Induced Amplitude Apodization Complex Mask Coronagraph

PIAACMC coronagraph

John Hagopian & Eduardo Bendek

Belikov, Sirbu, Marx, et al. 2021

WFIRST PIAA Set assembly (image by Camilo Mejia)

John Hagopian & Eduardo Bendek

Dan Wilson

PIAACMC coronagraph

Monochromatic, 9×10^{-9} , $4 - 8 \lambda / D$

10% broadband, 1.8×10⁻⁸, 3.5 – 8 λ /D

Belikov, Sirbu, Marx, et al. 2021, vacuum testbed at HCIT operated by David Marx

Coronagraphs current lab performance: monolithic apertures

Coronagraphs Current Lab Performance: unobscured aperture

Unobscured circular pupil with simple Lyot Coronagraph in vacuum:

4 x 10⁻¹⁰ contrast (1 polar), JPL HCIT Team – Decadal Survey Testbed (DST)

- Over 10% BW, averaging from 3-10 λ/D, 360° DH (Seo, B.J. et al SPIE 2019)
- Over 20% BW, from 5.5-13 λ /D, one-sided DH

Unobscured circular pupil with Vector Vortex (VVC6) Coronagraph in vacuum:

JPL HCIT Team DST (Ruane, G. et al. SPIE 2022):

- 5.9 x 10⁻⁹ contrast over 20% BW, averaging from 3-8 λ/D, one-sided DH, 1 polar
- 1.6 x 10⁻⁹ contrast over 10% BW, averaging from 3-8 λ/D, one-sided DH, 1 polar

Coronagraph Current Performance in the Lab (vs 2020)

Coronagraph Type	Classical Lyot	Vector Vortex charge 6	Phase Apodized Pupil Lyot Coronagraph	Phase Induced Amplitude Apodization Coronagraph
Aperture Type	Circular unobscured (= off-axis Monolith)	Off-axis Segmented	Circular on-axis segmented
Deformable Mirrors	2 AOX (each 48 x 48)	2 AOX (each 48 x 48)	2 BMC MEMs (each 952 actus)	1 BMC MEMs (952 actus)
Separation Range	5-13.5 λ/D (vs 3-10 l/D)	3-8 λ/D	2 – 13 λ/D	3.5 – 8 λ/D
Dark Hole Azimuthal Extent (deg)	180 (vs 360)	180	180	180
Mean Raw Contrast over Sep. Range	4 x 10 ⁻¹⁰ (idem)	5.9 x 10 ⁻⁹ (10 ⁻⁸)	2 x 10 ⁻⁸	1.8 × 10 ⁻⁸
Central wavelength (nm)	550	635	638	650
Spectral bandwidth	20% (10%)	20% (10%)	Monochromatic	10%
Number of polarizations	1	1	2	1
Off-axis Throughput	medium	high	high	high
Sensitivity to low order aberrations	medium	low	medium	medium
Facility	JPL HCIT Testbed	JPL HCIT Testbed	STScl HiCAT Testbed	JPL HCIT Testbed
Vacuum Operation	Υ	Υ	Ν	Υ

Currently demonstrated static contrast performance degrades when moving to coronagraphs with higher throughput and lower sensitivity to aberrations, moving from monolithic to segmented apertures, and from off-axis to on-axis

Near Term Priorities for Improving Coronagraph Technical Readiness toward HWO ... and Informing Upcoming Trades

HWO required combination of contrast (~10⁻¹⁰), bandwidth (20%) and IWA (2-3 λ /D) not yet demonstrated

- Push in-vacuum static tests of simple Lyot coronagraphs on clear apertures to
 - Characterize and improve testbed environment ultimate limits using the simplest possible case
- Push in-vacuum static tests of more advanced coronagraphs (smaller IWA, better throughput and resilience to aberrations) on:
 - Clear and Segmented apertures
- Characterize performance in the presence of induced dynamic perturbations
 - Without correction: validate theoretical dependence to aberrations for different coronagraphs
 - With correction: test various WFSC systems to be used for dark hole optimization and maintenance
- Support industry partners in manufacturing high quality masks (e.g. VVC, APLC) and / or further develop in-house capabilities
- Conduct detailed optical simulations of static coronagraphic performance and expected yield in the UV, including realistic throughput losses and polarization effects

Benefits and Challenges of UV Coronagraphy

"The most sensitive indicator of atmospheric O_2 is the UV O_2 (Hartley-Huggins) band, which would have created a measurable impact on Earth's spectrum for ~50% of its history to date, versus ~10% for O2". *Schwieterman, E. et al.* 2019

However

- Planets are much fainter in the UV!
- UV Throughput is low! UV reflectivity per surface is no better than 92% (for bare AI) and coronagraphs need many optics (15 on CGI)
- WFC reqts scale as λ
- Birefringence is generally higher in the UV, inducing incoherent "polarization aberrations"

Backup slides

Wide-band contrast on the Decadal Survey Testbed (cont.)

Apodized Pupil Lyot Coronagraph

APLC coronagraph John Hagopian Segmented pupil (patterned carbon nanotubes (DM by IrisAO) on silicon/glass)

Soummer et al. 2022

APLC coronagraph

First transmissive APLC. A very early test.

- Monochromatic at 638nm
- ~6-8×10-8 from 7 13 λ/D
- Limited by WFE on apodizer, calibration underway

Lyot 1939, figure from Por (2020, thesis)

Lyot-style coronagraph

Lyot-style coronagraph

Lyot 1939, figure from Por (2020, thesis)

Lyot-style coronagraph

DM voltage discretization measured with ZWFS

& PAPLC

In-band ZWFS

Exoplanet detection methods

NASA Exoplanet Database