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“THE SURVEY RECOMMENDS THAT THE FIRST MISSION 
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Background QSOs observed 
with S/N > 10 in FUV continuum
in < 1 hour

LUVOIR Final Report 2019



• PLACE HOLDER
• MORE WORDS 

France et al. 2017; LUVOIR Final Report 2019

THE BIRTHPLACE OF STARS AND PLANETS



“The mission will also need focal plane 
instrumentation to acquire:

• images and spectra over the range of 100 nm to 
2 microns with 

• parameters similar to cameras and spectrometers 
proposed for the Large Optical UV Infrared 
Telescope (LUVOIR) and the Habitable Exoplanet 
Observatory (HabEx).”

“These instruments would include:

• moderately wide-field imaging at UV, optical and 
near-IR wavelengths as well as

• multi-object spectroscopy over a similar 
wavelength range.”

The HWO Instrument Recommendation from EOS-1



LUVOIR/LUMOS and Habex/UVS: 
Roadmap UV instrument concepts for HWO

Instrument overview papers: 

France et al. SPIE 2017
Scowen et al. SPIE 2019

LUVOIR and Habex final reports, 2019

UVS Instrument Schematic
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Target Sensitivity Performance (LUMOS-B)

Courtesy of Eric Lopez, NASA/GSFC

~ 25x

> 100x
> 100x



Keep

LUMOS-B Performance

Mode

Peak 
Sensitivity 
Band (nm)

Res Pow 
(best 1’x1’ 

of FOV) 

Ang Res (best 
1’x1’ of FOV, 

mas) 
G120M 100-140 40K 31
G150M 130-170 52K 32
G180M 160-200 59K 33
G155L 100-200 17K 39
G145LL 100-200 530 23
G300M 200-400 33K 23
G700M 400-1000 28K 41
FUV Img 100 - 200 N/A 40

~ 800 shutters available per exposure 
in M & L MOS modes

Each microshutter is ~110 mas (clear)  in 
height, so each is a “long slit” aperture 
(~2-5 XD resols/shutter). 

Multi-object selection with micro-
shutter arrays (MSAs), 
development work led at 
NASA/GSFC



KeepG150M: λ ~ 111-189 nm
<R> = 52K, <θ> = 32mas

~ 800 shutters available per exposure 
in M & L MOS modes

Each microshutter is ~110 mas (clear)  in 
height, so each is a “long slit” aperture 
(~2-5 XD resols/shutter). 

LUMOS-B Performance

Mode

Peak 
Sensitivity 
Band (nm)

Res Pow 
(best 1’x1’ 

of FOV) 

Ang Res (best 
1’x1’ of FOV, 

mas) 
G120M 100-140 40K 31
G150M 130-170 52K 32
G180M 160-200 59K 33
G155L 100-200 17K 39
G145LL 100-200 530 23
G300M 200-400 33K 23
G700M 400-1000 28K 41
FUV Img 100 - 200 N/A 40



UV technology needs for future flagship missions: 



Requirements: 

1) High-efficiency spectrograph designs that deliver high angular & 
spectral performance over ‘wide’ fields

2) Large-format (100 - 200 mm), photon-counting detectors with high 
global/local rate capability (~5 MHz) and high spatial resolution (20 -
25 μm) 

3) Optical Coatings with > 50% reflectance at 103nm, high reflectance 
into the visible/NIR

4) Multi-object selection mechanisms (e.g., microshutter or 
micromirror), 420x840 elements, 2 side buttable, 1E-5 scatter at Lyα

5) Band-selecting UV filter technology with ≤ 1% transmission at Lyα

6) Low-scatter, high-efficiency (> 60% peak order) diffraction gratings 

UV technology needs for future flagship missions: 



3) Optical Coatings with reflectance > 50% at 
103nm, high reflectance into the visible/NIR

Instrumental needs: Prior/Ongoing 
investments

broadband 100 – 2000nm 
coatings (protected 
enhanced Al+LiF), > 50% at 
103nm, > 80% over 115-
200 nm, > 88% over 200 -
850 nm

SAT/APRA - JPL and 
GSFC programs (PIs –
Nikzad, Hennessy, 
Quijada), 

Roman Technology 
Fellowship - (PI – Fleming), 

APRA - rocket and cubesat 
instrument applications (PIs 
– France, Fleming) 

scaled to ~1m optics APRA – 0.5m rocket mirrors 
(PI – France, Fleming) 



SISTINE Pathfinder Spectrograph: 
--Al+eLiF coatings on shaped mirrors, up to 0.5m  

--first time these coatings have been deposited 
on large (> 2”) and shaped optics

Al+eLiF

MCP SISTINE

3) Optical Coatings with reflectance > 50% at 
103nm



SISTINE secondary mirror 
receiving protective ALD 

overcoat (AlF3) at JPL 
Microdevices Lab (J. 

Hennessy et al.)



SPRITE Cubesat: 
--Plot of the SPRITE humidity test sample after 
coating with just eLiF (blue dashed line), and then 
after the MgF2 overcoat (solid lines). The colored 
curves show no degradation from 103 - 115 nm 
after four weeks of aging at 50% and 60% relative 
humidity. 

3) Optical Coatings with reflectance > 50% at 
103nm
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People for future missions – NASA’s Suborbital Program
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A key challenge for the UV community in the next 5 years is to 
advance the required technologies through a combination of 
laboratory and flight experiments that simultaneously bring 
early-career scientists and engineers into this field.

Many of the driving science cases in Cosmic Ecosystems and 
Worlds and Suns in Context require UV imaging and spectroscopic 
capabilities that far exceed what is possible with existing 
observatories, including 

• 100 – 1,000 nm range

• R ~ 500 – 60,000 MOS over full spectral range

• R > 100,000 point source spectroscopy, 100 – 170nm

• 40 mas FUV and NUV imaging channel ( ≥ 2’ x 2’; multiple filters)

• > 25-100x effective area of HST-COS, 3x resolution, imaging 
spectroscopy, 800 objects at a time. 

Summary: UV Instruments for HWO



A key challenge for the UV community in the next 5 years is to 
advance the required technologies through a combination of 
laboratory and flight experiments that simultaneously bring 
early-career scientists and engineers into this field.

Many of the driving science cases in Cosmic Ecosystems and 
Worlds and Suns in Context require UV imaging and spectroscopic 
capabilities that far exceed what is possible with existing 
observatories, including 

• 100 – 1,000 nm spectral range

• R ~ 500 – 60,000 MOS over full spectral range ( ≥ 2’ x 2’)

• R > 100,000 point source spectroscopy, 100 – 170nm

• < 50 mas FUV and NUV imaging ( ≥ 2’ x 2’; multiple filters)

• > 25-100x effective area of HST-COS, imaging spectroscopy, 
hundreds of objects at a time. 

Summary: UV Instruments for HWO
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