Beyond Water: Far-IR Observations of Planet Formation

Kamber Schwarz, Carrie Anderson, Jennifer Bergner, Gordon Chin, Quentin Kral, Joan Najita, Peter Roelfsema, Xander Tielens, David Wilner, & Erick Young

H₂O Ice Phonon Modes

"How Are Potentially Habitable Environments Formed?" – Decadal E-Q3a

- Mid-IR ice features only probe surface (Sturm+23d)
 - Difficult to constrain abundance
- Lower optical depth in far-IR \rightarrow Tracing bulk ice content
- Far-IR features in emission
 - Not dependent on viewing angle!
- Wavelengths: 45 um 63 um
- R: ~300
- Sensitivity: ~0.3 mJy

N₂ Ice Phonon Modes

- Nitrogen largely unconstrained in disks
 - Likely in N₂ or NH₃ (Schwarz & Bergin 14, Krijt+23)
- FIR only way access to N_2 ice

Wavelengths: 145 um 204 um Sensitivity: 1% wrt continuum

Measuring C, O, N, S in ices

 H_2O , HCN, NH_3 , N_2 , H_2S , CO, CO_2 , CH_3OH , H_2CO

Measuring Major O, N, S Carriers in Gas Disks

- Major volatiles: CHONS
 - Important for habitability
- Only 1 detection of NH₃ gas in an outer disk (Salinas+16)
- O, N, & S distribution largely unknown
- Major carriers (H₂O, H₂S, NH₃) (Interpretent to the serve observe (H₂O, H₂S, NH₃) (Interpretent to the serve (H₂O, H₂S, H₃) (Interpretent to the serve (H₂O, H₂S, H₃) (Interpretent to the serve (H₂O, H₃) (Interpretent to the serve (H₂O, H₃)) (Interpretent to the serve (H₃)) (Interpretent to the serve (H₃))

Wavelengths: 170 – 524 um R: ~10⁵ Sensitivity: 45 mJy

Organics in Protostellar Cores

"What generates the observed chemical complexity of molecular gas?" – Decadal F-Q2c

- Emission from sublimated ices
- Isotopologue abundance traces formation
- Previous surveys suffer from beam dilution or resolve out emission

Wavelengths: 450-570 μ m R: ~10⁵ Sensitivity: 0.5 Jy

Deep Integrations on Debris Disks

"How Does the Distribution of Dust and Small Bodies in Mature Systems Connect to the Current and Past Dynamical States Within Planetary Systems?" – 2020 Decadal E-Q1d

- Emission from exo-Kuiper Belt
 peaks in FIR
 - No current detections
- Constrain frequency of exo-Kuiper Belts

Wavelength: 30-70 µm

Sensitivity: 22 µJy/beam

FIR Observations of Disks: more than just $H_2O!$

Observable	Wavelength (µm)	Frequency (THz)	R	Sensitivity
H ₂ O Ice	45 & 63	4.7 & 6.6	300	0.3 mJy
N ₂ Ice	145 & 204	1.47 & 2.0	300	1% wrt continuum
NH₃ Gas	107-524+	0.57-2.8	10 ⁵	45 mJy
Protostar Organics	520-650	0.45-0.57	10 ⁵	0.1 Jy
Exo-Kuiper Belts	30-70	4.3-10		22 µJy/beam