

Emerging Coating Technologies for Realizing High-Reflectance and Stable Mirror Coatings for Observations in the Far Ultra-violet

Manuel A. Quijada

Goddard Space Flight Center, Greenbelt, MD 20771

➢Objectives and Goals

Plasma-based e-Beam Treatment (LAPPS at NRL)

➢ Reactive PVD/XeF₂ Fluorination (GSFC)

Broad-Band Reflectance & TRL Comparison

➤Conclusions

Broad-band (90 nm – 3 μ m) High Reflectance Mirrors for Next Generation Space – Based Telescopes

Task Description

Deposit high performance optical broadband (FUV -> IR) mirror coatings:

Fluorination/passivation of Al-based coatings.

Atomic Layer Deposition (ALD) layers of AlF₃.

Ion assisted depositions for low-absorption metalfluoride to protect Al mirrors.

Driver / Need

Broadband coatings (90-2,500 nm) have been identified as an "Essential Goal" in the technology needs for a future Large-Aperture Ultraviolet-Optical-Infrared Space Telescope (LUVOIR and HabEx).

Benefits

High throughput & high signal-to-noise ratio (SNR) over a broad spectral range.

Enabling technology for astrophysics and optical exoplanet sciences (in shared platform).

The LUVOIR Final Report (https://asd.gsfc.nasa.gov/luvoir/reports/LUVOIR_FinalReport_2019-08-26.pdf)

HWO Concept Telescope

(HST = Hubble Space Telescope)

Approach: Using Low T_e Plasmas to Remove Oxide and Passivate Al surface with Fluorine

Plasma Treatment

Final Condition

Approach: Using Ultra-Low T_e Plasmas to Remove Oxide and Passivate Al surface with Fluorine

LAPPS: Large Area Plasma Processing System

A processing system based on electron beam generated plasma

Basic Operation

- High-energy (~ keV) beam injected into background to drive plasma production
- Easily scaled to large area processing
- Advantageous plasma properties
 - Easily controlled species production
 - Low electron temperature (T_e) plasma (<1 eV) \rightarrow Low ion energy (<5 eV) \rightarrow Low/No Damage

Radical Source: Inductively Coupled Plasma (ICP)

R.A. Meger et al., US patent no. 5,874,807 (Feb. 1999)

S.G. Walton et al., ECS Journal of Solid State Science and Technology, 4(6) N5033-N5040 (2015)

Mind the Gap Splinter Session, 243 AAS Meeting, New Orleans LA

Low ion energy shows ability to grow high quality fluoride films

- Low ion energy processing capability
 → excellent reflectivity
- Demonstrates ability to grow fluoride coating without surface roughening or affecting underlying Al layer.

Uniformity Tests: ICP vs. Non-ICP (FUV)

- The FUV reflectance displays a peak value close to 90% at Lyman-Alpha
- Excellent uniformity (standard deviation among 5 samples is < 0.20 %) over 115-180 nm
- 5 eV case had best reflectivity characteristics.
- Surface roughness does not seem to be significantly affected by ion energy.

Research Coating Chamber Capabilities

UHV Research Chamber capable of thin film physical vapor deposition (PVD) and passivation.

XeF₂ Gas feed components capable of continuous flow or pulsed flow.

Inside view of RC with 2-material PVD deposition system.

R&D for combined PVD & fluorination of Al-based high performance FUV coatings.

Chamber is in operation and experimentations on producing various schemes of fluorination are ongoing

Reactive Physical Vapor Deposition (rPVD)

January 9th, 2024

Reflectance Result rPVD: Al+LiF

Highest R at H Lyman-alpha ever reported 🙂

• R data of mirrors with and without Ti seed layer meeting HabEx and LUVOIR R requirements

Mind the Gap Splinter Session, 243 AAS Meeting, New Orleans LA

Broadband Reflectance

Comparison Various Coating Technologies

	Coating Properties						
Coating Technology	λ Value @ R>60%	TRL	Largest Optics Coated	Elevated Substrate Temperatures Required?	Max. Relative Humidity for Coating Stability	Dielectric Layer Deposition Process	µ-roughness
Bare Al	>150 nm	6	>1 meter	No	~70-100%	-	~0.78 nm
Al+MgF ₂	>111 nm	6	> 1 meter	No	~70%	PVD	~1.84 nm
Al+LiF	>101 nm	6	~0.5 meter	No	< 30%	PVD	Fresh 1.5-2.5 nm Aged >3 nm
Al+eLiF+MgF ₂	>102 nm	~5-6	~ 0.3 meter	Yes	~60 %	eLiF (PVD) MgF ₂ (ALD)	1.5-2.5 nm
Al+AlF ₃ (e-beam)	>105 nm	~4	5x5 cm ²	No	~60%	E-beam Plasma	~0.81 nm
Al+XeLiF	>103 nm	~3	5x5 cm ²	No	~60%	Reactive PVD	~1-1.5 nm

Conclusions

- The Large Area Plasma Processing System at NRL has demonstrated oxide removal and fluorine passivation of Al mirrors **over 6**" **diameter area**
 - 15 nm 25 nm thick AlF₃ optical coatings
 - Reflectivity approaching specs for next generation space telescope mirrors
 - o <R>(100-200nm) = 81%
 - <R>(120 3000nm) = 93%
 - Demonstrated control of FUV reflectance properties of Al with a metal fluoride overcoat (MgF₂, AlF₃) by varying ion energy, radical density, and plasma exposure time.
 - Verification of reflectance uniformity, environmental stability, microroughness and polarization characterization has been demonstrated to be at TRL 4.
- A second coating technology (XeLiF), which involves passivation with a fluorine containing precursor (XeF₂) gas is showing promising reflectance in the FUV.
- The surface XeF₂ passivated Al does not show (via AFM) significant changes in low to moderate humidity even after months in nominal lab conditions.

Acknowledgments

Javier del Hoyo¹, Luis Rodriguez de Marcos^{1,2}, & Edward Wollack¹

¹NASA Goddard Space Flight Center, Greenbelt, MD 20771 ² Catholic University of America, Washington DC 20064

David Allred, M. R. Linford

Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602

Stephan McCandliss

Research Professor and director of Center for Astrophysical Sciences, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218

Funding Sources:

- NASA Strategic Astrophysics Technology grants # 21-SAT21-0027
- Brigham Young University department of Physics and Astronomy

Mind the Gap Splinter Session, 243 AAS Meeting, New Orleans LA

Backup Slides

FUV Reflectance for Ebeam + Radical Source Treatments with varying treatment time and varying ion energy

- Correlating XPS results with process conditions seems hint at two possible trends
- First increased ion energy led to slightly higher oxygen content
- Second longer exposure time led to slightly higher oxygen content
- Overall higher oxygen content was correlated with decreased FUV reflectivity

Mind the Gap Splinter Session, 243 AAS Meeting, New Orleans LA

Uniformity Performance Large Area Growth in 6" LAPPS Reactor

Uniformity across 6" substrate holder:

- Target thickness 25 nm
- 5 samples treated simultaneously
- Real time monitoring of center sample .
- Post treatment reflectivity analysis of all samples ٠
- Post treatment ellipsometry mapping of fluoride • thickness for all samples.

Sample	Chamber location	Average thickness
AI8A	top	24.6 ± 1.37 nm
AI5	middle	25.5 ± 1.74 nm
Al6	right	23.9 ± 2.54 nm
AI7	left	22.1 ± 0.59 nm
ECA1	bottom	24.9 ± 1.37 nm

Top: Sample configuration for the uniformity test. Bottom: Mean reflectance (red) and R non-uniformity (blue) from 6" sample array.

UV/Vis/NIR Polarized Reflectance

2.0%

UV/Vis/NIR Average R (AOI =12°)

Diattenuation

••••• AOI = 20°

700

Wavelength (nm)

1200

AOI = 12°

• AOI = 8°

1700

2200