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Outline
Objectives and Goals 
Plasma-based e-Beam Treatment (LAPPS at NRL) 
Reactive PVD/XeF2 Fluorination (GSFC)
Broad-Band Reflectance & TRL Comparison
Conclusions
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Broad-band (90 nm – 3 μm) High Reflectance Mirrors for Next Generation 
Space – Based Telescopes

HST

FUV
(HST = Hubble Space Telescope)

15 m

The LUVOIR Final Report (https://asd.gsfc.nasa.gov/luvoir/reports/LUVOIR_FinalReport_2019-08-26.pdf)

Task Description
Deposit high performance optical broadband 
(FUV -> IR) mirror coatings:

Fluorination/passivation of Al-based coatings. 
Atomic Layer Deposition (ALD) layers of AlF3. 
Ion assisted depositions for low-absorption metal-
fluoride to protect Al mirrors.

Driver / Need
Broadband coatings (90-2,500 nm) have been 
identified as an “Essential Goal” in the 
technology needs for a future Large-Aperture 
Ultraviolet-Optical-Infrared Space Telescope 
(LUVOIR and HabEx).

Benefits
High throughput & high signal-to-noise ratio 
(SNR) over a broad spectral range.
Enabling technology  for astrophysics  and 
optical exoplanet sciences (in shared platform). 

HWO Concept Telescope



January 9th, 2024 Mind the Gap Splinter Session, 243 AAS Meeting, New Orleans LA 4

Approach: Using Low Te Plasmas to Remove Oxide and 
Passivate Al surface with Fluorine

Glass

Aluminum 60-80nm

Aluminum Native Oxide – 2-4 nm

Initial Condition

Al2O3 etch threshold
≈20 eV in SF6 plasma

Al2O3

Aluminum

AlF3

Al

Plasma Treatment Final Condition

Eetch for AlF3 > Eetch Al2O3
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Approach: Using Ultra-Low Te Plasmas to Remove Oxide and 
Passivate Al surface with Fluorine
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LAPPS: Large Area Plasma Processing System

Radical Source: Inductively Coupled Plasma (ICP)
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Low ion energy shows ability to grow 
high quality fluoride films

June 10, 2011 6
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LUVOIR - Reflectivity Requirement
• Low ion energy processing capability 
 excellent reflectivity

• Demonstrates ability to grow fluoride 
coating without surface roughening or 
affecting underlying Al layer.
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Uniformity Tests: ICP vs. Non-ICP (FUV) 
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• The FUV reflectance displays a peak value close to 90% at Lyman-Alpha
• Excellent uniformity (standard deviation among 5 samples is < 0.20 %) over 115-180 nm
• 5 eV case had best reflectivity characteristics.

• Surface roughness does not seem to be significantly affected by ion energy.

ICP Non-ICP
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Research Coating Chamber Capabilities

Inside view of RC with 2-material 
PVD  deposition system.

UHV Research Chamber capable of thin film 
physical vapor deposition (PVD) and passivation.

XeF2 Gas feed components capable of 
continuous flow or pulsed flow.

R&D for combined PVD & fluorination of Al-based 
high performance FUV coatings.

Chamber is in operation and experimentations on 
producing various schemes of fluorination are on-
going
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Reactive Physical Vapor Deposition (rPVD)
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right after Al 
layer is deposited
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Reflectance Result rPVD: Al+LiF
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Technical Targets

• R data of mirrors with and without Ti seed layer meeting HabEx and 
LUVOIR R requirements
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Broadband Reflectance
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Comparison Various Coating Technologies
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Conclusions

• The Large Area Plasma Processing System at NRL has demonstrated oxide removal and fluorine 
passivation of Al mirrors over 6” diameter area

– 15 nm – 25 nm thick AlF3 optical coatings
– Reflectivity approaching specs for next generation space telescope mirrors

o <R>(100-200nm) = 81%
o <R>(120 – 3000nm) = 93%

– Demonstrated control of FUV reflectance properties of Al with a metal fluoride overcoat (MgF2, AlF3)  by varying ion 
energy, radical density, and plasma exposure time.  

– Verification of reflectance uniformity, environmental stability, microroughness and polarization characterization has 
been demonstrated to be at TRL 4.

• A second coating technology (XeLiF), which involves passivation with a fluorine containing 
precursor (XeF2) gas is showing promising reflectance in the FUV.

• The surface XeF2 passivated Al does not show (via AFM) significant changes in low to moderate 
humidity even after months in nominal lab conditions.
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Backup Slides
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TRL 3 Validation: FUV Reflectance versus O2 Content 
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FUV Reflectance for Ebeam + Radical Source Treatments with varying treatment time and varying ion energy
• Correlating XPS results with process conditions seems hint at two possible trends
• First – increased ion energy led to slightly higher oxygen content
• Second – longer exposure time led to slightly higher oxygen content
• Overall – higher oxygen content was correlated with decreased FUV reflectivity
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Uniformity Performance Large Area 
Growth in 6” LAPPS Reactor
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UV/Vis/NIR Polarized Reflectance
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