Exoplanet Science Drivers for UV-SCOPE

UltraViolet Spectroscopic Characterization Of Planets and their Environments

Evgenya Shkolnik, Arizona State University / David Ardila, Jet Propulsion Laboratory

UV-SCOPE

Team

David Ardila Jet Propulsion Laboratory

R. Parke Loyd Eureka Scientific, Inc.

Sarah Peacock NASA-Goddard

Travis Barman University of Arizona

Victoria Meadows University of Washington

Hilke Schlichting UCLA

Courtney Dressing UC-Berkeley

Ruth Murray-Clay UC-Santa Cruz

Evgenya Shkolnik Arizona State University

Michael Line Arizona State University

Shouleh Nikzad Jet Propulsion Laboratory

David Sing Johns Hopkins University

Josh Lothringer Utah Valley University

James Owen Imperial College London

Kevin Stevenson Applied Physics Lab

Ball

Mark Swain Jet Propulsion Laboratory

Radiation Environment

Stellar NUV, FUV, EUV incident on planet atmosphere

Exosphere

How much mass is being lost to space across the diverse planet population? What is sculpting the radius distribution? NUV + FUV transits: escaping hydrogen (Ly- α) and metals.

Upper Atmosphere

X/EUV [10-100 nm]

What is the composition of the upper-atmosphere and how and when do they form clouds and hazes? NUV transits

FUV [100-200 nm]

Lower Atmosphere

How does the high-energy stellar environment affect atmospheric chemistry and habitability? Probed by optical/IR, but requires UV inputs due to the photochemical effect of the UV

R. Dragushan

NUV [200-400 nm]

E. Shkolnik, ASU

UV-SCOPE

Spectra from 1205 to 4000 Å

A 60-cm telescope

NUV + FUV spectrograph (R=100 - 6000)

High-quantum efficiency detectors (Nikzad et al. 2012, Jewell et al. 2019)

E. Shkolnik, ASU

UV-SCOPE

Science Case A: Measure Ly- α tail lengths of evaporating atmospheres of sub-Neptunes to distinguish between Photoevaporation (PE) and Core-Powered Mass Loss (CPML).

Blue-shifted Normalized Ly-α Flux absorption 0.8 due to tail 0.6 0.4 0.2 100 200 300 -300-200-100 0 Velocity (km/s) -y-α Transit Depth 0.9 0.8 0.7 0.6 0.5 0.4 -2.5 -5.0 0.0 2.5 5.0 7.5 10.0 12.5 Time (hours)

Owen et al. 2021

Science Case B: Determine the driving cloud chemistries in the atmospheres of the hot Jupiter population by observing the NUV SiO band complex.

Science Case C: Quantify the time-variable UV irradiation of exoplanets by measuring the flare and quiescent UV input from host stars.

Exoplanet & Stellar Targets

E. Shkolnik, ASU

The LiF prism as dispersion element

Effects of **radiation damage** and **luminescence (phosphoresce, fluorescence, Cherenkov)**:

- The Radiation Effects Group at JPL exposed multiple LiF samples to increasing radiation doses. Radiation damage is manageable
- We also measured the fluorescence conversion factor in the lab. We incorporated a negligible loss due to luminescence of 1 week/year of observing in due to high background in the observation plan

 $\Delta \lambda$ = System resolution element = Resel.

Science Detectors

- Two 1K x 2K delta-doped EM-CCD detectors Teledyne-e2V CCD201-20
 - Electron Multiplying (EM)-CCDs detectors have an operation mode that allows to detect very low fluxes
 - Kept at <168 K by passive cooling system
 - Coated with single-layer AR coatings AIF_3 and AI_2O_3
- Stray light due to target radiation emitted at wavelengths longer than 4000 Å is controlled by a strip of black silicon (not shown).

This document has been reviewed and determined not to contain export controlled technical data.

The Mission

- L2 halo orbit (low UV background, continuous observations)
- 3 years in space for primary mission
 - Fuel for 6 years
- Bus provided by Ball Aerospace (Ball Configurable Platform-type; BCP)
- Passively cooled
- Mission design and navigation by the Laboratory for Astrophysics and Space Science (LASP)

UV-SCOPE is a very efficient observatory

- No Earth eclipses: UV-SCOPE is 2x as efficient as HST
- No South Atlantic Anomaly: UV-SCOPE is 3x as efficient as HST
- Complete UV spectral range: UV-SCOPE is 2x as efficient as HST For example:
- SCB would take 9 years with HST
- SCC would take 7 years with HST, assuming nothing else is scheduled.

This document has been reviewed and determined not to contain export controlled technical data.

P E UV-SCOPE

Comparison with HST and GALEX

UV-SCOPE's throughput is

- FUV
 - Comparable to HST/COS in the FUV
 - 2.5x better than GALEX
- NUV
 - 7x to 10x better than HST/STIS and GALEX

HST/COS: Hubble Space Telescope Cosmic Origins Spectrograph HST/STIS: Hubble Space Telescope Imaging Spectrograph GALEX: Galaxy Evolution Explorer

This document has been reviewed and determined not to contain export controlled technical data.

UV-SCOPE

Observations

Transmission spectroscopy of ≈200 large and small exoplanets & stellar UV characterization

HST observations of escaping atmospheres

Exospheres: Directly measuring escape with Ly- α transits (at 1216 Å)

Bourrier et al. 2016

Challenge:

- Ly- α is heavily contaminated by geocoronal emission.
- HST cannot do broad population-wide studies. Need large time-investment.

PE vs CPML Experiment

FUV-calibrated model reconstructions of the UV

Predicting Stellar EUV Emission

Peacock et al., 2020, 2021

HST observations of upper-atmospheres

Upper-atmospheric composition & cloud/haze formation

Challenge:

- No mode covers the full UV range simultaneously, requiring many visits with non-uniform analyses.
- HST cannot do broad population-wide studies. Need large time-investment.

HST observations of stellar UV emission

UV environment of exoplanets & impacts on lower-atmosphere

Challenge:

- No mode covers the full UV range simultaneously.
- STScI no longer allows UV observations of active M stars.
- HST cannot do broad population-wide studies. Need large time-investment.

UV Impacts on Earth-like Atmospheres

Davis et al., in prep.

Strong UV Absorption in Hot Jupiter Atmospheres

Lothringer et al. 2022

Throughput

UV-SCOPE at a Glance

- Mission concept to study exoplanet atmospheres and planet habitability, in the changing environment of its host star's ultraviolet stellar activity.
- Produces a broad-purpose legacy database of timedomain ultraviolet spectra for nearly 200 stars and planets.
- Instrument: 60 cm, f/10 telescope paired to a long-slit spectrograph. Simultaneous, almost continuous coverage between 1203 Å and 4000 Å, with resolutions ranging from 6000 to 240
- To be located at the Sun-Earth L2
- Primary science mission: 34 months. Spacecraft carries enough fuel for 6 years of operations.

