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Exosphere
How much mass is being lost to space across the diverse planet 
population? What is sculpting the radius distribution?
NUV + FUV transits: escaping hydrogen (Ly-α) and metals. 

Upper Atmosphere
What is the composition of the upper-atmosphere and 
how and when do they form clouds and hazes?
NUV transits

Lower Atmosphere
How does the high-energy stellar environment 
affect atmospheric chemistry and habitability?
Probed by optical/IR, but requires UV inputs due to 
the photochemical effect of the UV
 

NUV [200-400 nm]

FUV [100-200 nm]

X/EUV [10-100 nm]

Radiation Environment

Stellar NUV, FUV, EUV
incident on planet atmosphere 
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Spectra from 1205 to 4000 Å

A 60-cm telescope 

NUV + FUV 
spectrograph 
(R=100 – 6000) 

High-quantum 
efficiency detectors 
(Nikzad et al. 2012, Jewell 
et al. 2019) 

Lyα C II Si IV C IV Mg II

E. Shkolnik, ASU
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Science Case A: Measure Ly-α tail lengths of evaporating atmospheres of sub-Neptunes to 
distinguish between Photoevaporation (PE) and Core-Powered Mass Loss (CPML).

Owen et al. 2021



SiO

Fe/Mg

Science Case B: Determine the driving cloud chemistries in the atmospheres of 
the hot Jupiter population by observing the NUV SiO band complex.



Science Case C: Quantify the time-variable UV irradiation of exoplanets by 
measuring the flare and quiescent UV input from host stars.



Exoplanet & Stellar Targets
UV-SCOPE

Exosphere Upper Lower
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The LiF prism as dispersion 
element
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Effects of radiation damage and 
luminescence (phosphoresce, 
fluorescence, Cherenkov): 
• The Radiation Effects Group at JPL 

exposed multiple LiF samples to 
increasing radiation doses. Radiation 
damage is manageable 

• We also measured the fluorescence 
conversion factor in the lab. We 
incorporated a negligible loss due to 
luminescence of 1 week/year of 
observing in due to high background in 
the observation plan

∆λ = System resolution element = Resel. 
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• Two 1K x 2K delta-doped EM-CCD detectors – Teledyne-e2V CCD201-20
– Electron Multiplying (EM)-CCDs detectors have an operation mode that allows to detect very low 

fluxes
– Kept at <168 K by passive cooling system
– Coated with single-layer AR coatings AlF3 and Al2O3

• Stray light due to target radiation emitted at wavelengths longer than 4000 Å is 
controlled by a strip of black silicon (not shown). 

Science Detectors

10This document has been reviewed and determined not to contain export controlled technical data. 



The Mission
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• L2 halo orbit (low UV background, 
continuous observations)

• 3 years in space for primary mission
• Fuel for 6 years

• Bus provided by Ball Aerospace (Ball 
Configurable Platform-type; BCP)

• Passively cooled
• Mission design and navigation by the 

Laboratory for Astrophysics and Space 
Science (LASP)

UV-SCOPE is a very efficient observatory
• No Earth eclipses:  UV-SCOPE is 2x as efficient as HST 
• No South Atlantic Anomaly: UV-SCOPE is 3x as efficient as HST 
• Complete UV spectral range: UV-SCOPE is 2x as efficient as HST
For example: 
• SCB would take 9 years with HST
• SCC would take 7 years with HST, assuming nothing else is scheduled. 

This document has been reviewed and determined not to contain export controlled technical data. 





Backup



UV-SCOPE’s throughput is
• FUV

– Comparable to HST/COS in the FUV
– 2.5x better than GALEX

• NUV
– 7x to 10x better than HST/STIS and 

GALEX

Comparison with HST and GALEX
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UV-SCOPE NUV

UV-SCOPE FUV

This document has been reviewed and determined not to contain export controlled technical data. 

HST/COS: Hubble Space Telescope Cosmic Origins Spectrograph
HST/STIS: Hubble Space Telescope Imaging Spectrograph
GALEX: Galaxy Evolution Explorer



Observations

Transmission 
spectroscopy of ≈200 
large and small 
exoplanets 
& stellar UV 
characterization

UV-SCOPE

E. Shkolnik, ASU



HST observations of escaping atmospheres
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Ly-α of warm 
Neptune
GJ 436b

absorption
during transit

Bourrier et al. 2016

Exospheres: Directly measuring escape with Ly-α transits (at 1216 Å) 

Challenge: 

• Ly-α is heavily contaminated by geocoronal emission.

• HST cannot do broad population-wide studies. Need large time-investment.



PE vs CPML Experiment
UV-SCOPE

E. Shkolnik, ASU

Photoevaporation

Core Powered
Mass Loss

FUV-calibrated model reconstructions of the UV



Predicting Stellar EUV Emission

Peacock et al., 2020, 2021



HST observations of upper-atmospheres 

Upper-atmospheric composition & cloud/haze formation

Challenge: 

• No mode covers the full UV range simultaneously, requiring many visits with non-uniform analyses.

• HST cannot do broad population-wide studies. Need large time-investment.

Lothringer et al. 2022



UV environment of exoplanets & impacts on lower-atmosphere

Daily flares 
on M stars

HAZMAT IV; Loyd, 2018a
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‘HazFlare’
of young 
early M star

Challenge: 

• No mode covers the full UV range simultaneously.

• STScI no longer allows UV observations of active M stars.

• HST cannot do broad population-wide studies. Need large time-investment.

Loyd et al., 2018

Quiescent

Flare

HST observations of stellar UV emission 



UV Impacts on Earth-like Atmospheres

Davis et al., in prep.



Lothringer et al. 2022

Strong UV Absorption in Hot Jupiter 
Atmospheres



011d_UV_D.png

This document has been reviewed and determined not to contain export controlled technical data.  JPL/Caltech Proprietary Proposal Sensitive. 
Distribution Limited to Evgenya Shkolnik at ASU.



Throughput
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NUV ChannelFUV Channel
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• Mission concept to study exoplanet atmospheres and 
planet habitability, in the changing environment of its 
host star’s ultraviolet stellar activity.

• Produces a broad-purpose legacy database of time-
domain ultraviolet spectra for nearly 200 stars and 
planets.

• Instrument: 60 cm, f/10 telescope paired to a long-slit 
spectrograph. Simultaneous, almost continuous 
coverage between 1203 Å and 4000 Å, with resolutions 
ranging from 6000 to 240 

• To be located at the Sun-Earth L2
• Primary science mission: 34 months. Spacecraft carries 

enough fuel for 6 years of operations. 

UV-SCOPE at a Glance
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