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" UV-SCOPE

Radiation Environment Exosphere

i S - How much mass is being lost to space across the diverse planet
.Stg.llgr NUV{'-FU\L EUV : population? What is sculpting the radius distribution?
incident on planet atmosphgre NUV + FUV transits: escaping hydrogen (Ly-a) ant metals.

Upper Atmosphere

What is the composition of the upper-atmosphere and
how and when do they form clouds and hazes?

NUYV transits

X/EUV [10-100 nm]

Lower Atmosphere

How does the high-energy stellar environment
affect atmospheric chemistry and habitability?
Probed by optical/IR, but requires UV inputs due to
“the photochemical effect of the UV

\" N E. Shkolnik, ASU

FUV [100-200 nm]

R. Dragushan

NUV [200-400.nm]



UV-SCOPE

Spectra from 1205 to 4000 A

A 60-cm telescope

NUV + FUV
spectrograph
(R=100 - 6000)

High-quantum

efficiency detectors

(Nikzad et al. 2012, Jewell
et al. 2019)
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Science Case A: Measure Ly-a tail lengths of evaporating atmospheres of sub-Neptunes to
distinguish between Photoevaporation (PE) and Core-Powered Mass Loss (CPML).
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Science Case B: Determine the driving cloud chemistries in the atmospheres of
the hot Jupiter population by observing the NUV $SiO band complex.

1.30 -
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Science Case C: Quantify the time-variable UV irradiation of exoplanets by
measuring the flare and quiescent UV input from host stars.

Normalized UV Flux

HST Flare Monitoring: 3-5d
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UV-SCOPE Flare Monitoring: 40-50 d

_______________

Template lightcurves superposing cyclic,
rotational, and flare variability
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Exoplanet & Stellar Targets
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The LiF prism as dispersion
element

Effects of radiation damage and
luminescence (phosphoresce,
fluorescence, Cherenkov):

 The Radiation Effects Group at JPL
exposed multiple LiIF samples to
iIncreasing radiation doses. Radiation
damage is manageable

« We also measured the fluorescence
conversion factor in the lab. We
incorporated a negligible loss due to
luminescence of 1 week/year of
observing in due to high background in
the observation plan
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Science Detectors

80

UV-SCOPE delta-doped CCD

FUV AR-coated
UV-SCOPE delta-doped CCD
Q NUV AR-coated

——

60

Csl-HST/COS MCP Bialkali photocathode MCP

1200 1600 2000 2400 2800

Wavelength (A)

3200

3600 4000

Two 1K x 2K delta-doped EM-CCD detectors — Teledyne-e2V CCD201-20

Electron Multiplying (EM)-CCDs detectors have an operation mode that allows to detect very low
fluxes

Kept at <168 K by passive cooling system
Coated with single-layer AR coatings AlF; and Al,O,

Stray light due to target radiation emitted at wavelengths longer than 4000 A is
controlled by a strip of black silicon (not shown).

This document has been reviewed and determined not to contain export controlled technical data.
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The Mission

High-gain
Antenna

Telescope
Spectrometer

Cryo-radiator

Solar Array

Deployable Cover

L2 halo orbit (low UV background,

continuous observations)

3 years in space for primary mission
Fuel for 6 years

Bus provided by Ball Aerospace (Ball

Configurable Platform-type; BCP)

Passively cooled

Mission design and navigation by the

Laboratory for Astrophysics and Space

Science (LASP)

UV-SCOPE is a very efficient observatory
* No Earth eclipses: UV-SCOPE is 2x as efficient as HST
* No South Atlantic Anomaly: UV-SCOPE is 3x as efficient as HST

« Complete UV spectral range: UV-SCOPE is 2x as efficient as HST
For example:
« SCB would take 9 years with HST
« SCC would take 7 years with HST, assuming nothing else is scheduled.

Cryogenic Radiator 163 K
0.4 m?

SPACECRAFT INTERFACE 300K

14.4 W to space

90°

Sun Angle

This document has been reviewed and determined not to contain export controlled technical data.
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Comparison with HST and GALEX

25
20 , .
UV-SCOPE'’s throughput is
g 15 UV-SCOPE FUV ° F UV
2 UV-SCOPENUY T::szg:Ezr;)M —  Comparable to HST/COS in the FUV
g 10 HST/COS - G160M — 2.5x better than GALEX
= — -HST/STIS - G230L NUV
[ ]
----- GALEX FUV Imaging
A N R R GALEX NUV Imaging —  7xto 10x better than HST/STIS and
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0 s e i e
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HST/COS: Hubble Space Telescope Cosmic Origins Spectrograph
HST/STIS: Hubble Space Telescope Imaging Spectrograph
GALEX: Galaxy Evolution Explorer

This document has been reviewed and determined not to contain export controlled technical data. 1+ JPL



UV-SCOPE

(
Observations
notuper Wt
Transmission T . .
SpectrumiEs ransmission
$ "~
< spectroscopy of =200
2 sio
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20 Mg .,
H,0 S exoplanets
& stellar UV
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Exoplanet transit event ——— Towards Earth

E. Shkolnik, ASU



Exospheres: Directly measuring escape with Ly-a transits (at 1216 A)
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Challenge:
. Ly-a is heavily contaminated by geocoronal emission.

« HST cannot do broad population-wide studies. Need large time-investment.




UV-SCOPE

PE vs CPML Experiment

10

Calculated Simulated UV-SCOPE ey Photoevaporation
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Predicting Stellar EUV Emission

ISM Absorbed

EUV

|Drives escape]
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HST observations of upper-atmospheres

Upper-atmospheric composition & cloud/haze formation

40 HAT-P-41b (Teq=1,950 K) A HST/STIS E230M
+ WASP-121b (Teq=2,350 K) M HST/STIS G430L/G750L
s 30 - + WASP-178b (Teq=2,450 K) @ HST/UVIS G280

-:E _+_ Lothringer et al. 2022
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Challenge:

- No mode covers the full UV range simultaneously, requiring many visits with non-uniform analyses.

- HST cannot do broad population-wide studies. Need large time-investment.




HST observations of stellar UV emission

UV environment of exoplanets & impacts on lower-atmosphere
Loyd et al., 2018
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Challenge:

- No mode covers the full UV range simultaneously.

. STScl no longer allows UV observations of active M stars.

- HST cannot do broad population-wide studies. Need large time-investment.




UV Impacts on Earth-like Atmospheres

Percent over Nominal FUV Flux
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Strong UV Absorption in Hot Jupiter
Atmospheres

+ HAT-P-41b (Teq=1,950 K) A HST/STIS E230M
+ WASP-121b (Teq=2,350 K) M HST/STIS G430L/G750L
+ WASP-178b (Tq=2,450 K) @ HST/UVIS G280
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Occurrence for
periods < 100 days

‘Sub-Neptunes’ are predicted to be losing
hydrogen; the H | lifetime and stellar wind
strength controls the observability of a
Ly-a transit.
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‘Super-Earths’ are predicted to not host
H-atmospheres, consistent with non-detections.
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Throughput

Throughput
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This document has been reviewed and determined not to contain export controlled technical data.
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UV-SCOPE at a Glance ™ o
] / = \Pl’ism M3
« Mission concept to study exoplanet atmospheres and ! | ]®

planet habitability, in the changing environment of its
host star’s ultraviolet stellar activity.

« Produces a broad-purpose legacy database of time-
domain ultraviolet spectra for nearly 200 stars and
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planets.
« Instrument: 60 cm, f/10 telescope paired to a long-slit r

spectrograph. Simultaneous, almost continuous . wavelength (4 _

coverage between 1203 A and 4000 A, with resolutions FUV Channel  NUV Channel

ranging from 6000 to 240
 To be located at the Sun-Earth L2

* Primary science mission: 34 months. Spacecraft carries ' — A\ ' [T
enough fuel for 6 years of operations. i Val

Telescope

Spectrometer

High-gain
Antenna

Cryo-radiator

This document has been reviewed and determined not to contain export controlled technical data. s JPL
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