

The Compton Spectrometer and Imager

John Tomsick (COSI Principal Investigator) University of California, Berkeley Space Sciences Laboratory

January 12, 2025

COSI overview

- COSI is a NASA Small Explorer (SMEX) satellite with a planned launch in 2027
 - Critical Design Review completed Dec 4-6, 2024
- □ Detects 0.2-5 MeV gamma rays
- □ Unique combination of capabilities
 - Uses germanium detectors cooled to cryogenic temperatures to provide *excellent energy resolution*
 - Instantaneous field of view is >25% -sky and covers the whole sky every day
- Designed for studies of nuclear and annihilation emission lines across our Galaxy, while enabling TDAMM science
 - E.g., transient detection and variable source monitoring

Upcoming SMEX mission operating in the energy range between NuSTAR and Fermi/LAT

The MeV gap

- Previous and current missions have had relatively poor sensitivity in the MeV range
- Discovery space where there is known to be interesting physics
 - Antimatter annihilation line at 511 keV
 - Nuclear lines from unstable products of element formation
 - Accreting black holes
 - Multimessenger astrophysics

Compton telescopes:

- COMPTEL on CGRO (1991-2000)
- COSI is a compact Compton Telescope

COSI's key science goals

Payload design and instrument concept

Germanium detector array

- 16 germanium detectors in a cryostat
- 0.2 5 MeV
- High-resolution spectroscopy
- Compton imaging
- Compton polarimetry

Anticoincidence subsystem (ACS)

- Bismuth germinate (BGO) scintillator "shields"
- Reducing and monitoring background
- 50 ms light curves at 80 keV 2 MeV (for GRB alerts)

COSI orbit and operations

Equatorial orbit to minimize background

- COSI will spend nearly all of its observing time in "survey mode"
 - North/South zenith offset alternating every 12 hours

Measurement requirements for emission line goals

Characteristic	Requirement
Sky Coverage	>25%-sky instantaneous FOV100%-sky each day
Energy Resolution* (FWHM)	 <1.2% @ 0.511 MeV <0.8% at 1.157 MeV (⁴⁴Ti)
Narrow Line Sensitivity (2 yr, 3ơ, point source)	[photons cm ⁻² s ⁻¹] • 1.2x10 ⁻⁵ @ 0.511 MeV • 3.0x10 ⁻⁶ @ ²⁶ Al, ⁶⁰ Fe, and ⁴⁴ Ti
Angular Resolution (FWHM)	 <4.1° @ 0.511 MeV <2.1° @ 1.8 MeV (²⁶Al)

*Notes on energy resolution:

- For fully reconstructed Compton events (average of 2.5 interactions) ٠
- 1.157 MeV requirement is <0.8% FWHM; capability estimate ~0.5% ٠

COSI will reach the sensitivities shown for every source in the sky

GRBs: One way COSI enables TDAMM science

Requirements (short GRBs)

- Localize GRBs to <2.5° (90% confidence error radius)
- Report positions in <1 hr
- Arrival times to an absolute accuracy of <100 ms
- Fluence limit ~6x10⁻⁷ erg/cm² for localizations (expect COSI to detect ~one per 2 months)

Expectations for GRBs beyond requirements

- The alert trigger will also include long GRBs, magnetars, and other gamma-ray transients
- Will use on-board scintillators to extend FOV and obtain rough (several degree) positions
- Expect COSI to measure polarization of ~30 GRBs with minimum detectable polarization <50%

Cumulative distribution for GRBs measured over 10 years by Fermi/GBM

- Student Collaboration project
- Two NaI scintillator detectors
- 30 keV 2 MeV
- FOV > 60%-sky
- Gulick+24, SPIE paper

Nuclear line transients and COSI – TDAMM report

The COSI collaboration

University of California, Berkeley University of California, San Diego Naval Research Laboratory Goddard Space Flight Center Space Dynamics Laboratory Northrop Grumman Italian Space Agency (ASI) German Aerospace Center (DLR) French National Space Agency (CNES)

Institutions of Co-Investigators and Collaborators

- Clemson University
- Louisiana State University
- Los Alamos National Laboratory
- Lawrence Berkeley National Laboratory
- IRAP, France
- INAF, Italy
- Kavli IPMU and Nagoya University, Japan
- JMU/Würzburg and JGU/Mainz, Germany

- NTHU, Taiwan
- Centre for Space Research, North-West University, South Africa
- Deutsches Elektronen Synchrotron (DESY), Germany
- University of Hertfordshire, UK
- LAPTh-CNRS, France
- Yale University
- Michigan Technical University
- Washington University, St. Louis

- Marshall Space Flight Center
- Boston University
- IAA-CSIC, Spain
- Stanford University
- Rice University

Current activities

Hardware

16 detector assembly (one germanium stack)

EM cryostat

Mini-COSI

Testing

¹³³Ba spectrum and ¹³⁷Cs first light image both measured with a COSI germanium detector

Software Yearly Public Data Challenges

Simulated data with realistic sources analyzed with COSItools (DC-2 available; DC-3 coming soon)

cosi.ssl.berkeley.edu

Full-size harnessing mockup

Activity	2022	2023	2024	2025	2026	2027	2028
	ASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASONI	D J F M A M J J A S O N D	JFMAMJJASOND
Key-Decision Points		4/	16 🟠 КДР-С		10/5 🔥 KDF	Р-D О КDР-е 10/1	
Mission Milestones	1/17		26 🟠 PDR 12/4 🟠	CDR	^{9/4} 仓仓		
COSI Instrument Milestones		2/	9 🕜 IPDR 11/8 🟠 IC	DR	SIRPER	3/24 8/27	
	•		N	low De		tow	

Most recent milestone: Successful Critical Design Review (CDR) on 2024 Dec 4-6

What activity?	Where?	When?
Payload I&T - calibration	SSL (Berkeley)	Mid-2025 to Early-2026
Payload I&T - environmental testing	SDL (Utah)	Mid-2026
Observatory I&T	NG (DC area)	Late-2026 to Early-2027
Launch (SpaceX Falcon 9)	Cape Canaveral, Florida	August 2027

COSI fact sheet

System, TDRSS)

Uncover the Origin of Galactic Positrons

 COSI employs advances in gamma-ray imaging to resolve the distribution of antimatter in the Galaxy

Reveal Galactic Element Formation

 COSI will provide major advances in nuclear line studies, including ²⁶Al, ⁶⁰Fe, and ⁴⁴Ti

Gain Insight into Extreme Environments with Polarization

 COSI determines emission mechanisms and geometries in accreting black holes, including Active Galactic Nuclei

Probe the Physics of Multimessenger Events

 COSI detects gamma-ray bursts and rapidly reports their positions to allow for follow-up by other observatories

	Payload (UCB)
	Spacecraft (NG)
	cm

- Northrop Grumman: spacecraft (Dulles); structure (Magna)
- UCB/SSL: payload systems, cryostat, electronics, BTO
- Naval Research Lab: ASIC readout electronics and bismuth germanium oxide (BGO) shields
- Lawrence Berkeley National Lab: germanium detectors
- GSFC: Cryostat Heat Removal Subsystem (CHRS)
- Space Dynamics Lab: electronics and I&T support

Characteristic	Requ	irement	Timing requirements	
Sky Coverage	• >25 • 1009	%-sky instantaneous FOV %-sky each day	 5 ms relative Photon arrival times to UT to better than 100 ms 	
Energy Resolution (FWHM)	• <1.2 • <0.8	2% @ 0.511 MeV 3% at 1.157 MeV (44Ti)		
Narrow Line Sensitivity (2 yr, 3σ)	[photons/cm ² /s] • 1.2x10 ⁻⁵ @ 0.511 MeV • 3.0x10 ⁻⁶ @ ²⁶ Al, ⁶⁰ Fe, and ⁴⁴ Ti		Localizing short GRBs	
Angular Resolution (FWHM)	• <4.1° @ 0.511 MeV • <2.1° @ 1.8 MeV (²⁶ Al)		 <2.5° (90% confidence radius) Poporting position 	
Polarization	• >1.4x10 ⁻¹⁰ erg/cm ² /s		in <1 hr	
GRB alerts	• 6x10 ⁻⁷ erg/cm ² (<20° off-axis)			
COSI Mass, Power, and Data		Mission Parameters		
Mass (372 kg Not to Exceed)350 kg (Ma Expected V		350 kg (Maximum Expected Value, MEV)	 Launch scheduled for August 2027 	
Power (732 W generated by Solar Array w/ battery storage)		609 W MEV (including battery recharge and other inefficiencies)	 Launch vehicle SpaceX Falcon 9 	
Data (through Malindi Ground Station, provided by ASI)		~1 GB/day S-band	 Orbit: 530 km altitude and ~0° inclination 	
Data (through Tracking		4 kbps S-band	 >2-year mission Mission operations 	

alert

at UCB/SSL