Stars \& Stellar Populations with a 4 to 8 m UV/O Space Telescope

Thomas M. Brown
Space Telescope Science Institute

Enabling Breakthroughs

- Serendipity aside, groundbreaking progress usually comes from two avenues:

〉 Order-of-magnitude gains in sample or signal
, Crossing new thresholds

- Background-limited observations of faint stars make enormous gains with aperture: Exposure time \propto aperture ${ }^{-4}$
(for fixed luminosity \& distance)

Volume \propto aperture 3

(for fixed luminosity \& exposure time)

Need for space platforms

- Much of this work requires
\downarrow stable high-precision photometry \& astrometry
\downarrow tens of thousands of stars
- crowded fields several arcmin across
\downarrow low sky backgrounds
\downarrow dynamic range: tiny fraction of $L_{\text {SUN }}$ to $10,000 x$ brighter
\downarrow access to the optical \& UV
- Ground telescopes can provide high-resolution imaging, but not with the contrast \& stability over wide fields achieved from space, not yet in the optical, and never in the UV
- Large_fround telescones (e_g TMT) will not be_able_to

Case I:

Star Formation Histories

Two primary ways to explore the formation of galaxies

- High-redshift observations (e.g., HDF, GOODS, UDF)
- "Stellar archaeology" in resolved stellar populations of nearby galaxies
- These methods are complementary

Advantages of high-z work:

- Directly observing evolution of galaxies with time
- Enormous galaxy sample available to such work
Disadvantages of high-z work:
- Properties of interest (age, metallicity, kinematics) are only measured in composite sense
- Measurements are prone to significant uncertainties and degeneracies
- Properties are measured on scale of resolution element

Progress requires pushing to time of first light and birth of galaxies (e.g., JWST)

Advantages of resolved stellar populations:

- Provides the most accurate methods for measuring kinematics, age, and metallicity
- Can probe all substructures within each galaxy

Disadvantages of resolved stellar populations:

- Often limited to probing pencil-beams within galactic structures
- Local Group is cosmological backwater (small number of galaxies and not representative of all types)

Progress requires reaching larger galaxy groups beyond the Local Group

In several large HST programs, we have mapped the star
formation
history in various M3I structures
(star count map from
Ferguson et al. 2002)

M3 I inner halo (II kpc)

210×210 arcsec

800×800 pc

Halo Distribution in Age and Metallicity

- Older ages at larger radi, but extended star formation history exists everywhere (Brown et al. 2008)
- Similarities between inner halo and stream imply stream debris pollutes inner halo (Brown et al. 2006)
- Outer disk resembles thick disk population of solar neighborhood (Brown et al. 2006)

In 100 hours of observations split between two wide bands,
HST can measure star formation histories in the outskirts of Local Group galaxies

12 Mpc Deprojected

In the same observing time,
JWST could measure star formation
histories in over $3 x$ the volume

Alternatively, JWST could measure these histories in
nearby galaxies over $5 x$ faster

12 Mpc Deprojected

Large UV/Optical space telescopes begin making enormous gains

An 8m telescope could measure star formation histories in:

- I00s of dwarfs
- incl. half a dozen low-Z starbursts (thanks A. Aloisi)
- dozen giant spirals
- giant elliptical

12 Mpc Deprojected

An 8 meter
UV/Optical space telescope could very quickly explore many sightlines through relatively nearby galaxies, and probe more crowded regions in these galaxies (e.g., M3 I bulge)

12 Mpc Deprojected

Case 2:

Globular Cluster Systems of the Local Group

- Milky Way has ~I60 globulars, M3 I has ~460 globulars
- Milky Way clusters are nearly all old (> 10 Gyr)
- Photometry \& spectroscopy of M3I globulars indicate a possibly wide age spread (3-I3 Gyr; e.g., Puzia et al. 2005, Fan et al. 20I0, Perina et al. 201I)

One M3 I globular has MSTO photometry so far (Brown et al. 2004)

Case 3:

White Dwarf Cooling Curve in
 Galactic Globular Clusters

- Provides accurate age, independent of MSTO age, tests of stellar evolution
- Also probe H-burning limit in the same cluster (thanks A Dotter)
- WD termination is ~ 13 mag fainter than MSTO at old ages ($\sim 12 \mathrm{Gyr}$)
- Only characterized in 3 nearby globulars to date (M4, NGC 6397, 47 Tuc: HST / PIH Richer Hansen etal 2004, 2007, 2011 in Drep. $)_{\text {Te }}$,

NGC 6397
Hansen et al. 2007, ApJ, 67I, 380

Case 4:

Black Holes in

Galactic Globular Clusters

- Galaxies host super-massive black holes (SMBHs), but the existence of intermediate-mass black holes (IMBHs) in globulars remains inconclusive
- SMBHs scale as either (bulge mass) ${ }^{1}$ or (velocity dispersion) ${ }^{4}$
- Current limits on IMBHs in 5 globulars do not rule out masses scaled from SMBHs, and do not probe core-collapsed clusters due to crowding
- I IVIS tnlncrann in 4 Qm mannn mnild nmahn mamn mollapsed clusters and scaling of SMBHs

Omega Cen
Anderson \&
van der Marel, 2010, ApJ, 710, I032
van der Marel \& Anderson, 2010, ApJ, 710, I063
(thanks J. Anderson)

Examples needing UV spectroscopy

- D. Lennon: Extend our knowledge of stellar mass loss in hot stars to low Z (below that of the SMC)
- Appropriate galaxies (at metallicities below quarter-solar with enough hot supergiants) are at 5 - IO Mpc (i.e., beyond HST/COS)
- R. Osten: Detect astrospheres in cool stars - mass loss, planetary habitability, angular momentum loss
v Requires increasing the sample beyond the dozen stars within 30 pc
- D. Soderblom: Determine basic structural properties (masses, radii) for young magneticallyactive stars

1 Requires binary systems currently beyond reach of HST

Summary

- Much of the work on local stellar populations is limited to small samples due to prohibitively expensive observations
- An 8 m UV/O telescope makes enormous gains:
, ~120x faster observations in HST-sampled volume
, $\sim 35 x$ larger volume sampled in a given time
- Star formation histories throughout the Local Group and reaching into the Coma Sculptor Cloud
- Ages for other large globular cluster systems
- WD cooling curve ages for dozens of globulars

