4-meter Space Telescope Design Concepts for a UVOIR / ExoPlanet Mission

Dr. Charles F. Lillie

September 22, 2011

Ground Rules and Assumptions

- 4-meter class UVOIR telescope consistent with decadal survey recommendations:
 - "as much could be learned about the universe at ultraviolet wavelengths as motivated the proposal and development of JWST for observations at infrared wavelengths."
 - "Key advances could be made with a telescope with a 4-meter-diameter aperture with large field of view and fitted with high-efficiency UV and optical cameras/spectrographs operating at shorter wavelengths than HST. This is a compelling vision that requires further technology development."
- Telescope compatible with coronagraphs and starshades for ExoPlanet detection and characterization
 - "The committee highly recommends a modest program of technology development to begin mission trade-off studies, in particular those contrasting coronagraph and star-shade approaches, and to invest in essential technologies such as detectors, coatings, and optics, to prepare for a mission to be considered by the 2020 decadal survey. A notional budget of \$40 million for the decade is recommended."

UVOIR Telescope Requirements

<u>Parameter</u>	<u>Value</u>	<u>Comment</u>		
Aperture:	4-meters	consistent with decadal recommendation, could be larger		
Mirror Type	Monolithic	permits wide range of starlight suppression options		
Telescope Type	On-axis Cassegrain/ Off-axis Gregorian	On-axis Cassegrain is lower cost, lighter. Off-axis Gregorian is best for internal coronagraph. Both options should be		
Short wavelength limit:	0.1 µm	No larger than 0.1 μm		
Long wavelength limit:	2.4 μm (TBR)	No longer than 5 µm to minimize cooling and test requirements. The long wavelength limit may not be much of a driver on the telescope per se. The main emphasis overall should be on the uv-optical- and near ir		
Diffraction-limited wavelength	0.2 μm	shortward of 0.5 μm		
Image/surface quality	2 Å rms (TBR)	PSD ≤ HST/TDM to permit internal coronagraphy		
Wavefront stability	< 1% (TBR) change in WF abberations in 24 hrs	must be consistent with internal coronagraphy		
Actuator density	~360/m² (TBR)	as for AHM, but must be consistent with internal		
Coatings/reflectivity	Al overcoated w/MgF ₂	consistent with high efficiency across the wavelength band		
Field of view	15 arcmin	as for THEIA, NWO 4-m telescopes		

ExoPlanet Mission Requirements

	MUSTS
No.	Exoplanet capability
M.1	Able to detect an Earth twin at quadrature in a Solar System twin at a distance of 10 pc
M.2	Able to detect a Jupiter twin at quadrature in a Solar System twin at a distance of 10 pc
M.3	Examine at least 14 Cumulative Habitable Zones with D _{mag} ≥ 26 sensitivity
M.4	Examine at least 3 Cum HZs with $D_{mag} \ge 26$ sensitivity
M.5	Characteriz discovered exoplanets by R>4 spectroscopy from 0.5 to 1.1µm
M.6	Characterize discovered TXPs by R>70 spectroscopy from 0.5 to 1.1µm
M.7	Characterize discovered TXPs by R>70 spectroscopy from 0.5 to 0.85µm
M.8	Determine Size, Mass, Albedo for found planets
M.9	Determine Size, Mass, Albedo to 10% for an Earth twin in a Solar System twin at 10 pc
M.10	Absolute photometry of Earth twin to 10%
M.11	Able to measure O ₂ A-band equivalent width to 20% for Earth twin at 10 pc
M.12	Able to measure H ₂ O equivalent width to 20% for Earth twin at TBD pc
M.13	Able to guide on stars as faint as V _{AB} = 16.
M.14	Able to detect disk emission lines of Na I, H α , [S II], and K I.
M.15	Capable of optical imaging at half the normal inner working angle at contrast levels of 1e-6

Representative Telescope Designs

Telescope for Habitable Exoplanets and Intergalactic/Galactic Astronomy (THEIA)

Actively-corrected Coronagraph Concepts for Exoplanetary System Studies (ACCESS)

On-Axis Telescope for General Astrophysics

- 4m, On-axis, F16 TMA Telescope
- 300 nm diffraction limited
- F1.5 primary
- Al+MgF₂ coated primary
- Al+LiF coated secondary
- 45 degree Sugar-Scoop Sunshade
- Active Isolation Struts to 30 mas
- 3-axis Pointing to 3 arcsec
- HR-16 Reaction wheels
- 5 kw Solar Array
- S-Band occulter and Earth link
- Ka-Band High-rate Downlink
- 2 Gimbaled High Gain Antennas

Instruments

SFC Instruments

- Dual-Channel, Wide Field Imager
- 19' x 15' FOV
- 3.3 Gpixel FPAs, 66 x 55 cm
- 517 nm Dichroic split
- 4 mas pointing with FSM

UVS Instruments

- Multi-Purpose Ultraviolet Spectrograph (100-300 nm),
 3 Science Cameras (250-400, 400-700,
 - -30,000 100,000 Spectral Resolution
 - Fed direct from secondary
- Photon-counting, 50k x 1k micro-channel array (100-170 nm)
- Photon counting 8k x 8k CCD (170-300 nm)

XPC Instruments

- Science Cameras (250-400, 400-700, 700-1000)
- 2 Integral Field Units
- Coarse and Fine IR Occulter Tracking Camera
 - Fine 20 arcsec field with 2k x 2k detectors
 - Coarse with 200 arcsec field

Off-Axis Telescope for Coronagraphic Instruments

4-m Telescope Performance

- Compared to he HST, a 4-m telescope will have:
 - Collecting area of 12.37 m² versus 4.45 m² (2.78 X greater)
 - Point Source Sensitivity 7.72 x greater
 - Limiting Magnitude 2.22^m greater (~32 ABMAG in 10 hours)

Starshades: Direct Imaging of ExoPlanets

- "Starshade" blocks out target star's light
- Allows the planet light to reach the telescope
- No special requirements for the telescope, making it easier to build and friendly for general astrophysics
- Starshade with hypergaussian petals deigned by Northrop and Webster Cash

Starshades are Scaled to Meet Mission Requirements

• Starshade sized for various missions:

Case	Telescope Diameter (D _{Tel})	Starshade Diameter (D _{SS})	SS/Tel Distance (z)	D _{Tel} /D _{SS}	IWA	F# at 0.6
ACCESS	1.5 m	25 m	15,000 km	0.06	170 mas	17
NWO Flagship	4 m	50 m	80,000 km	0.08	65 mas	13
Starshade with JWST – small	6.5 m	30 m	25,000 km	0.22	120 mas	15
Starshade with JWST – large	6.5 m	50 m	55,000 km	0.13	94 mas	19
ATLAST – small	8 m	80 m	165,000 km	0.1	50 mas	16
ATLAST – large	16 m	90 m	185,000 km	0.18	50 mas	18

 Note that starshade is not scaled directly to telescope size, each mission has its own science requirements that were considered

Telescope Enhancements for Use With Starshades

- S-Band Transponder for RF ranging between telescope and occulter
 - Range and range-rate data combined with ground-based tracking locates telescope and occulter within 50 km
- Laser beacon (low-power "pointer") for telescope acquisition by starshade's astrometric camera
 - Camera provides telescope location relative to background stars with 5 milli-arcsecond resolution, 1-sigma (>2-m at 80,000 km)
- Shadow sensor (pupil plane NIR imager) to sense location of the telescope within the shadow of the Starshade and provide error signals for station keeping
 - Sensor (~10 kg) uses IR leakage (Poisson's Spot) to measure distance from enter of shadow with 10 cm accuracy

Key Enabling Technologies

- Rapid, low cost fabrication of ultra-light weight primary mirror segments
 - Eliminates time consuming grinding and polishing
 - Several approaches including vapor deposition of nanolaminates bonded to actuated substrates
- Active figure control of primary mirror segments
 - High precision actuators
 - Surface parallel actuation eliminates need for stiff reaction structure (SMD)
- High speed wavefront sensing and control
 - High density figure control enables very light weight mirror segments
 - High speed, active while imaging WFS&C allows for rapid slew and settle and earth imaging
- Highly-packageable & scalable deployment techniques
 - Deployment architecture that take advantage of light weight mirrors
- Active control for light weight structural elements to supply good stability
 - Reduces weight required for vibration and thermal control

Nanolaminate on Mandrel

Starshade Technology Development

Summary

- "Key advances could be made with a telescope with a 4-meter-diameter aperture with large field of view and fitted with high-efficiency UV and optical cameras/ spectrographs operating at shorter wavelengths than HST"
- "The EOS panel believes that, if technology developments of the next decade show that a UV-optical telescope with a wide scope of observational capabilities can also be a mission to find and study Earth-like planets, there will be powerful reason to build such a facility."
- An off-axis 4-m telescope with a coronagraph, the instruments proposed for THEIA, and the enhancements need for operation with a starshade would meet the requirements for ExoPlanet detection and characterization and meet the needs of the general astrophysics community for a UVOIR follow-on to HST.
- This telescope can be developed at an affordable cost if the key enabling technologies, which have been identified, are developed during this decade