

## $A \rightarrow \Omega$ Probe(s)

#### Christopher Martin Caltech

#### Wisdom



- "Do or do not... there is no try."
- "Size matters not, ... Look at me. Judge me by size, do you?"

Following the flow of Baryons from the Cosmic Web to Planets

IGM (δ~1-100)

- High Resolution UV Absorption Spectroscopy (Multi-object? Tomography?)
- Mod Resolution UV Emission Integral Field Spectroscopy (IFS)
- Mod Resolution Multi-Object-Spectroscopy (MOS)





Following the flow of Baryons from the Cosmic Web to Planets





CGM (δ~10<sup>2</sup>-10<sup>4</sup>)

- High Resolution UV Absorption Spectroscopy (Multi-object? Tomography)
- Mod Resolution UV Emission Integral Field Spectroscopy (IFS)
- Mod Resolution Multi-Spectroscopy





Following the flow of Baryons from the Cosmic Web to Planets





Galaxies ( $\delta \sim 10^4 - 10^8$ )

Mod-High Resolution UV Emission IFS

Mod Resolution Multi-Object Spectroscopy

Wide field UV/Optical Imaging





Following the flow of Baryons from the Cosmic Web to Planets







#### Clusters/GMCs (δ~10<sup>8</sup>-10<sup>10</sup>)

- Wide field UV/Optical Imaging
- Mod-High Resolution UV Emission IFS

IGM

 Mod Resolution UV Multi-Object Spectroscopy

Following the flow of Baryons from the Cosmic Web to Planets





# SF Clusters



#### Protostars/PPDs/Young Stars (δ~10<sup>16</sup>-10<sup>19</sup>)

High Contrast Imaging

**PPDs** 

- Wide field UV/Optical Imaging
- High Resolution UV spectroscopy (Multi-object?)
- Mod-High Angular Resolution UV Emission IFS

Following the flow of Baryons from the Cosmic Web to Planets



# Galaxies

#### Giant Planets (δ~10<sup>24</sup>)

IGM

- High Contrast Imaging
- High Angular Resolution, Low Spectral Resolution IFS



#### Probe I -- Alpha

- Wide-field
  - ∼I.5 m
  - Wide-field UVO imaging
  - Massively multi-object
    UV Spectroscopy
    - low, medium, high R?
  - Wide-field UV Integral
    Field Spectrograph

- Science
  - IGM/CGM emission/ absorption, tomograph?
  - Galaxy gas, star formation history, feedback
  - Star Formation Region gas physics, PDRs
  - Protoplanetary Disk gas physics
  - General astrophysics
- Technology Demonstration
  - High efficiency UV coatings, detectors
  - Highly multiplexed UV

#### Probe 2 -- Omega

- Narrow-field
  - ~I.5 m
  - Dedicated O/UV
  - High resolution imaging
  - High contrast imaging
  - High resolution/contrast imaging spectroscopy

- Science
  - Physics of star formation
  - Proto-planetary disk structure
  - Giant planets imaging & characterization
  - AGN formation, evolution, & feedback
- Technology demonstration
  - High-contrast imaging
  - UV compatibility
  - Starshade?

#### Spectroscopy Requirements

| Spectrograph<br>Requirement | Current<br>Technology                                                                 | Technology Requirement                                             |
|-----------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Field of View               | I grating → single<br>object                                                          | Wide field of view                                                 |
| Imaging or Multiobject      | single object                                                                         | Integral field unit<br>Multiobject capability                      |
| # of reflections            | $\begin{array}{l} \text{COS} \rightarrow 1\\ \text{STIS} \rightarrow 3-4 \end{array}$ | 3 reflection spectrographs high R coatings                         |
| Gratings                    | holographic<br>aberration correcting<br>35-40% efficiency                             | anamorphic<br>arbitrary groove function<br>near theoretical limits |
| Spectral resolution         | 1000-30,000                                                                           | 3000 → 50,000                                                      |

#### **Detector Requirements**

| Detector<br>Requirement                                     | Technology<br>Status                                                          | Technology<br>Requirement                                            |  |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|
| QE                                                          | 5-10%                                                                         | 50-80%                                                               |  |  |
| Background<br>(Read noise + Dark Noise<br>+ Spurious Noise) | ~0.1-1 ct/s/cm <sup>2</sup>                                                   | <0.1 ct/s/cm <sup>2</sup>                                            |  |  |
| # of pixels                                                 | ~4 x 10 <sup>6</sup>                                                          | 4 * (10-100) <sup>2</sup> * 2000 ~ 10 <sup>6</sup> - 10 <sup>8</sup> |  |  |
| Photon counting                                             | MCPs – yes<br>CCDs – no                                                       | UV imaging – yes<br>UV spectroscopy – YES!!                          |  |  |
| Red rejection<br>(instrument system)                        | 10 <sup>-3</sup> – 10 <sup>-5</sup><br>photocathode, filters,<br>spectroscopy | 10-3 – 10-4                                                          |  |  |
| Time resolution                                             | microsecond                                                                   | 0.1-1000 sec for aspect reconstruction                               |  |  |
| Dynamic range                                               | <100 ct/s                                                                     | 10 <sup>-3</sup> – 10 <sup>7</sup> ct/s (imaging)                    |  |  |

### **Technology Roadmapping**

Christopher Martin Chair COPAG Executive Commitee

## **Technology** Categories

- Telescopes/mirrors
- Structures
- Detectors
- Coatings
- Multiplexing: microshutter arrays, micromirror arrays, integral field units
- Instrumentation optics (Gratings, optical surfaces, spectrometers, etc.)
- Other: electronics, cryogenics, thermal, telemetry

## Technology Figures of Merit

- I. Current and projected (2020, assuming funding as specified below) performance.
  - e.g., for detectors: QE vs. wavelength, internal/dark noise, photon-counting capability, number of pixels/formats/scaleability, energy resolution, dynamic range.
- 2. Implementation and operational issues/risks:
  - e.g., for detectors requirements for cooling, high voltage, required materials/process improvements, red leak/out of band response.
- 3. Cost/time to TRL-6 and leverage:
  - What is the current TRL level, what NASA funding and time is required to reach TRL6,
  - What is the degree of difficulty of these developments
    - for example using the DOD Degree of Difficulty scale
  - What non-NASA astrophysics division resources can be brought to bear to leverage the development>
    - significant industrial involvement and prior investments, cross-division, cross-agency, private-sector investments and applications, existing infrastructure and institutional investment
- 4. Relevance to and impact on possible future missions:
  - Large 4-8 m UVOIR general astrophysics missions, Far IR/Sub mm missions
  - Joint Exoplanet imaging missions & required compatibility technologies

## **Technology Readiness Level**

- TRL I. Basic principles observed and reported.
- TRL 2. Technology concept and/or application formulated.
- TRL 3. Analytical and experimental critical function and/or characteristic proof-of-concept completed.
- TRL 4. Component and/or breadboard validated in laboratory environment.
- TRL 5. Component and/or breadboard validated in relevant environment.
- TRL 6. System/subsystem model or prototype demonstrated in a relevant environment (ground or space).
- TRL 7. System prototype demonstrated in a space environment.
- TRL 8. Actual system completed and "flight-qualified" through test and demonstration (ground or flight).
- TRL 9. Actual system "flight-proven" through successful mission operations.

## DOD Degree of Difficulty

- I. Very low degree of difficulty anticipated in achieving research and development (R&D) objectives for this technology; only a single, short-duration technological approach needed to be assured of a high probability of success in achieving technical objectives in later systems applications.
- **II. Moderate degree of difficulty** anticipated in achieving R&D objectives for this technology; a single technological approach needed; conducted early to allow an alternate approach to be pursued to be assured of a high probability of success in achieving technical objectives in later systems applications.
- **III. High degree of difficulty** anticipated in achieving R&D objectives for this technology; two technological approaches needed; conducted early to allow an alternate subsystem approach to be pursued to be assured of a high probability of success in achieving technical objectives in later systems applications.
- **IV. Very high degree of difficulty** anticipated in achieving R&D objectives for this technology; multiple technological approaches needed; conducted early to allow an alternate system concept to be pursued to be assured of a high probability of success in achieving technical objectives in later systems applications.
- V. The degree of difficulty anticipated in achieving R&D objectives for this technology is so high that a **fundamental breakthrough in physics, chemistry**, and so on is needed; basic research in key areas needed before system concepts can be refined.

#### **Disruptive Innovation**

- Ingredients
  - Questioning
  - Experimenting
  - Observing
  - Associating
    - linking concepts from diverse fields
  - Networking
    - to search for new ideas

see UNBOXED, Steve Lohr, Sunday 8/28/11 NYT

- Examples
  - e-Book (p-Book)
  - digital cameras (film)
  - PC (mainframe)



#### The Business Model

- 2 Strategies
  - Entreprenuerial
    - Decisions/rankings made by peer review panels
    - Pl vs. Pl
    - Natural selection
      - (or species extinction)
  - Collective/collaborative
    - Community speaks with one voice
    - Self-organized
    - e.g., Decadal Surveys





Exoplanets, Dark Energy









| COSMOLOGY & FUNDAMENTAL PHYSICS                                                         | СО | PCOS | Exo | IFS |
|-----------------------------------------------------------------------------------------|----|------|-----|-----|
| HOW DID THE UNIVERSE BEGIN?                                                             |    | Х    |     |     |
| WHY IS THE UNIVERSE ACCELERATING?                                                       |    | Х    |     |     |
| WHAT IS DARK MATTER?                                                                    |    | Х    |     |     |
| WHAT ARE THE PROPERTIES OF NEUTRINOS?                                                   |    | Х    |     |     |
| GALAXIES ACROSS COSMIC TIME                                                             |    |      |     |     |
| HOW DO COSMIC STRUCTURES FORM & EVOLVE?                                                 | Х  |      |     |     |
| HOW DO BARYONS CYCLE IN & OUT OF GALAXIES,<br>AND WHAT DO THEY DO WHILE THEY ARE THERE? | Х  |      |     |     |
| HOW DO BLACK HOLES GROW, RADIATE, AND<br>INFLUENCE THEIR SURROUNDINGS?                  | Х  | Х    |     |     |
| WHAT WERE THE FIRST OBJECTS TO LIGHT UP THE<br>UNIVERSE AND WHEN DID THEY DO IT?        | Х  |      |     |     |
| GALACTIC NEIGHBORHOOD                                                                   |    |      |     |     |
| WHAT ARE THE FLOWS OF MATTER & ENERGY IN THE<br>CIRCUMGALACTIC MEDIUM?                  | Х  |      |     |     |
| WHAT CONTROLS THE MASS-ENERGY-CHEMICAL<br>CYCLES WITHIN GALAXIES?                       | Х  |      |     |     |
| WHAT IS THE FOSSIL RECORD OF GALAXY ASSEMBLY FROM THE FIRST STARS TO THE PRESENT?       | Х  |      |     |     |
| WHAT ARE THE CONNECTIONS BETWEEN DARK AND LUMINOUS MATTER?                              | Х  |      |     |     |

| PLANETARY SYSTEMS & STAR FORMATION                                                                               | со | PCOS | Exo |  |
|------------------------------------------------------------------------------------------------------------------|----|------|-----|--|
| HOW DO STARS FORM?                                                                                               | Х  |      | Х   |  |
| HOW DO CIRCUMSTELLAR DISKS EVOLVE & FORM<br>PLANETARY SYSTEMS?                                                   | Х  |      | Х   |  |
| HOW DIVERSE ARE PLANETARY SYSTEMS?                                                                               |    |      | Х   |  |
| DO HABITABLE WORLDS EXIST AROUND OTHER<br>STARS,& CAN WE IDENTIFY THE TELLTALE SIGNS OF<br>LIFE ON AN EXOPLANET? |    |      | Х   |  |
| STARS AND STELLAR EVOLUTION                                                                                      |    |      |     |  |
| HOW DO ROTATION & MAGNETIC FIELDS AFFECT<br>STARS?                                                               | Х  | Х    |     |  |
| WHAT ARE THE PROGENITORS OF TYPE Ia<br>SUPERNOVAE                                                                | Х  | X    |     |  |
| HOW DO THE LIVES OF MASSIVE STARS END?                                                                           | Х  | X    |     |  |
| WHAT CONTROLS THE MASS, RADIUS, AND SPIN OF COMPACT STELLAR REMNANTS?                                            |    | X    |     |  |