Technology Roadmapping

Christopher Martin Chair COPAG Executive Commitee

Technology Categories

- Telescopes/mirrors
- Structures
- Detectors
- Coatings
- Multiplexing: microshutter arrays, micromirror arrays, integral field units
- Instrumentation optics (Gratings, optical surfaces, spectrometers, etc.)
- Other: electronics, cryogenics, thermal, telemetry

Technology Figures of Merit

- I. Current and projected (2020, assuming funding as specified below) performance.
 - e.g., for detectors: QE vs. wavelength, internal/dark noise, photon-counting capability, number of pixels/formats/scaleability, energy resolution, dynamic range.
- 2. Implementation and operational issues/risks:
 - e.g., for detectors requirements for cooling, high voltage, required materials/process improvements, red leak/out of band response.
- 3. Cost/time to TRL-6 and leverage:
 - What is the current TRL level, what NASA funding and time is required to reach TRL6,
 - What is the degree of difficulty of these developments
 - for example using the DOD Degree of Difficulty scale
 - What non-NASA astrophysics division resources can be brought to bear to leverage the development>
 - significant industrial involvement and prior investments, cross-division, cross-agency, private-sector investments and applications, existing infrastructure and institutional investment
- 4. Relevance to and impact on possible future missions:
 - Large 4-8 m UVOIR general astrophysics missions, Far IR/Sub mm missions
 - Joint Exoplanet imaging missions & required compatibility technologies

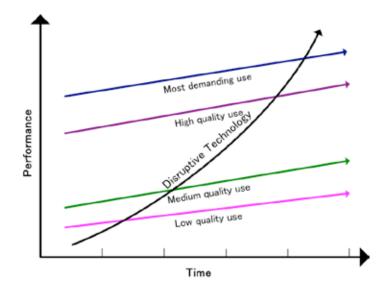
Technology Readiness Level

- TRL I. Basic principles observed and reported.
- TRL 2. Technology concept and/or application formulated.
- TRL 3. Analytical and experimental critical function and/or characteristic proof-of-concept completed.
- TRL 4. Component and/or breadboard validated in laboratory environment.
- TRL 5. Component and/or breadboard validated in relevant environment.
- TRL 6. System/subsystem model or prototype demonstrated in a relevant environment (ground or space).
- TRL 7. System prototype demonstrated in a space environment.
- TRL 8. Actual system completed and "flight-qualified" through test and demonstration (ground or flight).
- TRL 9. Actual system "flight-proven" through successful mission operations.

DOD Degree of Difficulty

- I. Very low degree of difficulty anticipated in achieving research and development (R&D) objectives for this technology; only a single, short-duration technological approach needed to be assured of a high probability of success in achieving technical objectives in later systems applications.
- **II. Moderate degree of difficulty** anticipated in achieving R&D objectives for this technology; a single technological approach needed; conducted early to allow an alternate approach to be pursued to be assured of a high probability of success in achieving technical objectives in later systems applications.
- **III. High degree of difficulty** anticipated in achieving R&D objectives for this technology; two technological approaches needed; conducted early to allow an alternate subsystem approach to be pursued to be assured of a high probability of success in achieving technical objectives in later systems applications.
- **IV. Very high degree of difficulty** anticipated in achieving R&D objectives for this technology; multiple technological approaches needed; conducted early to allow an alternate system concept to be pursued to be assured of a high probability of success in achieving technical objectives in later systems applications.
- V. The degree of difficulty anticipated in achieving R&D objectives for this technology is so high that a **fundamental breakthrough in physics, chemistry**, and so on is needed; basic research in key areas needed before system concepts can be refined.

Detector FOM Summary KISS UV Technology Workshop


	Band	QE [nm]											
Detector	[nm]	100	150	250	# pixels	PC	Dark	OOB	DE	RadTol	Lever	Imp Iss	CT6	TRL
BoSi MCP	<1000	40	25	8	>10^8	YES	3	3	1	3	2	HV, tube	3	~4
BoSi MCP+GaN	<300	*	50	36	>10^8	YES	3	2	1	3	2	HV, tube	2	~3
EBCCD+GaN	<300	*	55	40	3e7 (sp) 2e6 (Im)	YES	3	2	1	2	1	HV, tube	1-2	2-3
ARDDEMCCD	<1000	45	55	55	10^8 - 10^9	YES	3	1	1	2	3	Cold, cont	3	4
SPAD-CMOS-Si	<1000	35	55	55	10^8	YES	1	1	1	3	3	Cold, cont	1-2	1
												Cold, complex,		
MKIDS	<6000	30	75	75	64^2	YES	3	3	3	3	2	power	1	2
AlGaN APD	<300	*	50	50	0> 10^6	YES	1> ?	2	1	2?	2	Cold, hybrid	1	1
					256^2>									
AlGaN PIN	<300	*	50	50	10^6	NO	1>?	2	1	2?	2	Cold, hybrid	1	1

Disruptive Innovation

- Ingredients
 - Questioning
 - Experimenting
 - Observing
 - Associating
 - linking concepts from diverse fields
 - Networking
 - to search for new ideas

see UNBOXED, Steve Lohr, Sunday 8/28/11 NYT

- Examples
 - e-Book (p-Book)
 - digital cameras (film)
 - PC (mainframe)

The Business Model

- 2 Strategies
 - Entreprenuerial
 - Decisions/rankings made by peer review panels
 - Pl vs. Pl
 - Natural selection
 - (or species extinction)
 - Collective/collaborative
 - Community speaks with one voice
 - Self-organized
 - e.g., Decadal Surveys

Exoplanets, Dark Energy