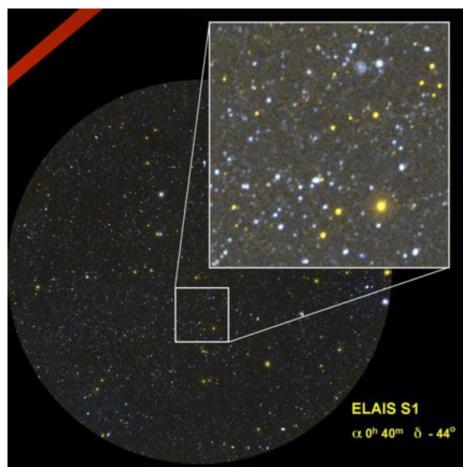
New Technologies Developed for FORTIS* Stephan McCandliss – JHU

stephan@pha.jhu.edu - 410-516-5272
*Far-UV Off Rowland-circle Telescope for Imaging an Spectroscopy

Co-Is and Collaborators:

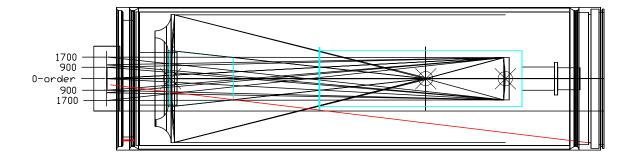

JHU - Brian T. Fleming, Paul D. Feldman, Mary E. Kaiser

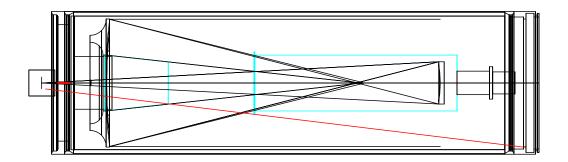
GSFC - Samuel H. Moseley, Alexander S. Kutyrev, Mary J. Li, David A. Rapchun, Jeffery Kruk

Sensor Sciences - Oswald H. Siegmund, Adrian Martin, John V. Vallerga

23 September 2011

My obsession started in 2004 (McCandliss et al. 2004) when >>>




Graphic taken from T. K. Wyder, Moriond Conference, March 29, 2004, La Thuile, Italy

23 September 2011

- **GALEX** found lots of nearby faint "blue" star forming galaxies over large angular fields
- **Science Questions:** What fraction of these galaxies leak ionizing radiation? How efficient? **Implications for epoch of** reioniztion?
- **Technology Need: Industrial approach to** wide field multiobject spectroscopy in far-UV; moderate R

High Efficiency Spectro/Telescope Concept Gregorian with a triaxially figured laminar grating as the secondary optic

Four New UV Science Thrusts (McCandliss et al. 2010)

- Enabled by the development of wide-field multiobject spectroscopy in the UV
 - The Mystery of Lyman Continuum Escape and the Potential of a Lyα Proxy (McCandliss et al. 2008, 2009)
 - Search for the Epoch of He II Reionization
 - Baryon Acoustic Oscillation Probe of Dark Energy with Lyα Forest
- Visualizing the Ly α Web

Low Aeff

V

High Aeff

New Technologies Developing with sounding rocket borne pathfinder: Science - Lyman alpha escape fraction and gas-to-dust ratio

- Spectro/telescope
 - High efficiency "two-bounce" Gregorian design with two spectral and one imaging channel; requires triaxial figured secondary grating and cylindrical achromat
 - Ideal instrument for wide-field spectral imaging surveys
- Microshutter array (MSA) (developed by GSFC for JWST)
 - Prototype is an array of 64 x 128 individually selectable slitlets
 - Placed at prime focus image to dissect image
 - Provides multi-object capability
- Autonomous targeting
 - Zero-Order Microshutter Interface (ZOMI)
 - Brightest targets are selected on-the-fly for spectral acquisition.
- 23 September 2011 COPAG Meeting 2, STScl

Risk/cost mitigation strategy: build pathfinder first; chose simple, until proven otherwise

Triaxial Secondary Grating

Microshutter Array Assembly

Metering Structure: Carbon Fiber Facesheet Aluminum Honeycomb Composite

Mirror Baseplate/Vacuum Bulkhead

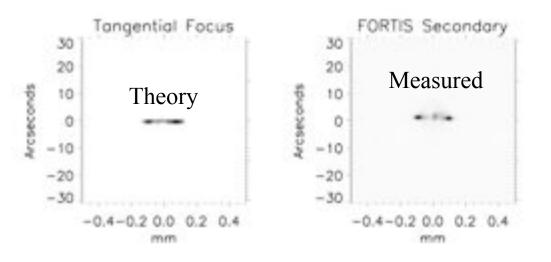
Detector Focus Assembly: Vacuum Bellows and Support Legs ST5000 (Flathead) Startracker and Thermal Compliant Springs

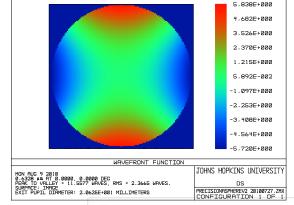
Double Arch ULE Primary Mirror: Delring Radial Centering Spring, 2 X 3pt Longitudinal Suspension

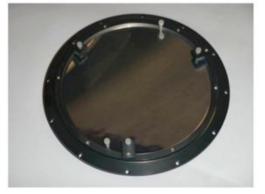
+-100 Volt Charged Particle Repeller Grid

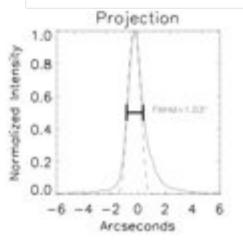
Detector and Evacuated Gatevalve Assembly

Electronics Deck

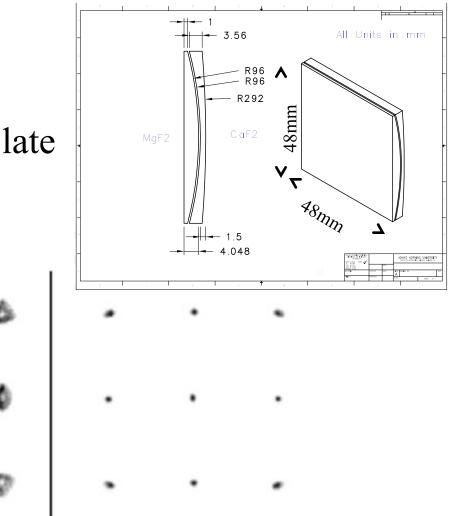

23 September 2011

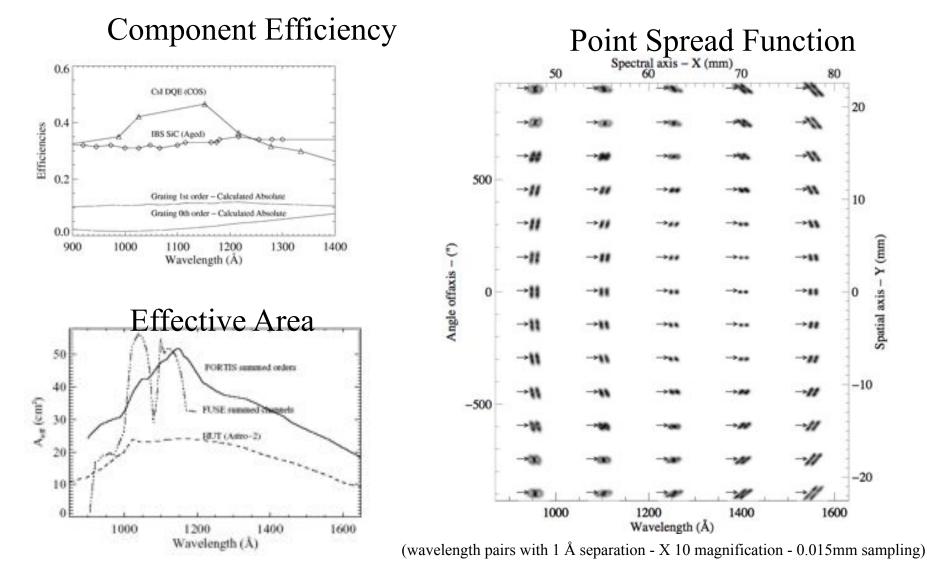

COPAG Meeting - 2, STScl


6


Triaxial ellipse

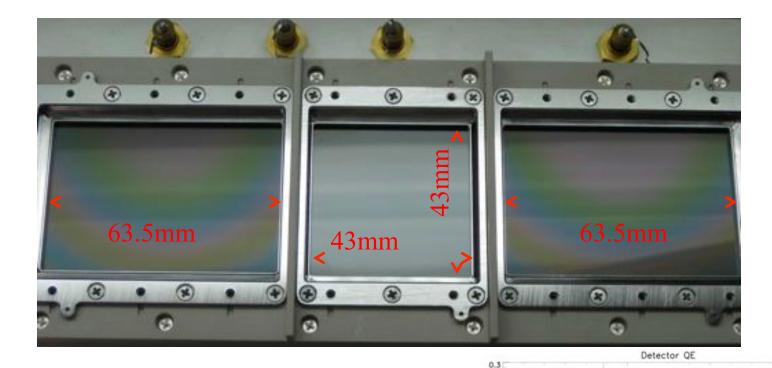
- Two secondary tri-axial ellipses delivered May 2010
- Two additional substrates delivered November 2010 (Precision Asphere)
- Delivered to Horiba Scientific (JY) Nov. 2010
 - Expected grating delivery Nov. 2011




23 September 2011

Corrective cylindrical doublet - achromat

CaF₂ / MgF₂
Estimated Delivery in late fall 2011

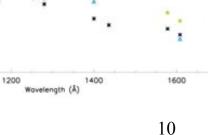


Fortis expected performance

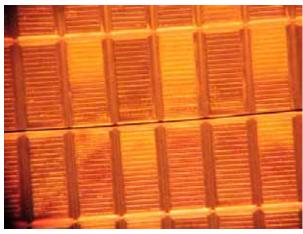
23 September 2011

FORTIS MCP Detectors

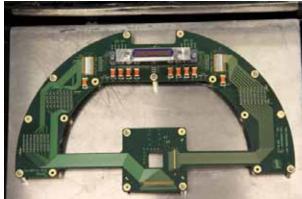
- +1/0/-1 Orders
 - Three cross delaylines
 - CsI Photocathodes
 - Area (mm x mm): 63.5×43 , 43×43 , $63.5 \times 43 = 170 \times 43$
 - Pixel size X(μm), Y(μm): 10.6, 7.8; 13.4, 13.7; 11.4, 7.5
 - Pixel count: $5991 \times 5513 + 3209 \times 3139 + 5570 \times 5733 = 75,034,244$ pixels

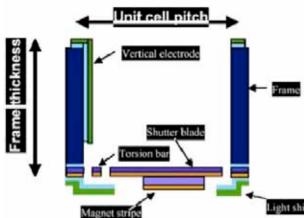

Future Borosilicate

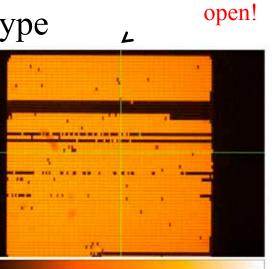
Testbed



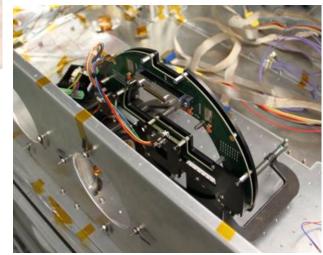
Quantum Efficiencie 10


0.0

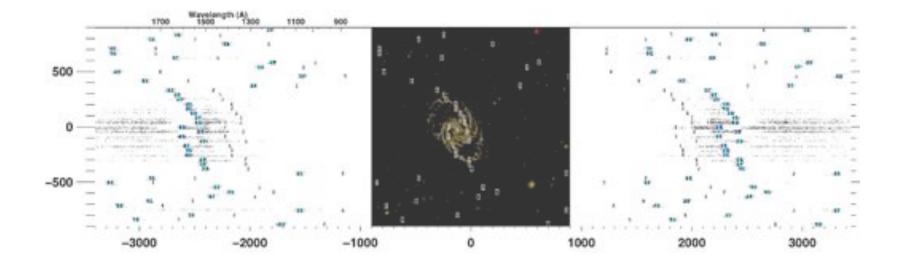



Microshutter Arrays

- JWST NIRSPEC prototype
 - 128 x 64 shutters



- Latched


0 2.5 5 7.5 10 13 15 17 20 23 25

Targeting - two stages

- Stage 1 Zero Order target imaging
 - Settle on target, send "All Open" command
 - Magnet scans MSA
 - Latching voltage locks all shutters open
 - Acquire image through open shutters
 - Integrate light through each shutter
 - Use NI cRIO running labview to select brightest region of galaxy in each row of microshutters (Zero Order Microshutter Interface ZOMI)
- Stage 2 Acquire spectra of target
 - ZOMI sends addresses to MSA electronics
 - Magnet scans MSA again
 - Closing coincides with a grounding of the latching voltage for a given row
 - Column latching the voltage of selected shutter remains on
 - Remain on target acquiring data through open shutters for duration of flight

Putting it all together; the FORTIS spectral imaging plane – brightest slit per row targeting algorithm

Technology Readiness Levels

System provider	Subsystem	Components	Heritage	TRL Heritage	TRL FORTIS at present [*]
Detector •Sen. Sci.	Head	CsI MCPs and X-delayline anodes	FUSE, COS, SRs	9, 9, 7	6
•JHU	Electronics	TAC, A/D, parallel multiplexer	FUSE, COS, SRs	9, 9, 7	6
	Vac door	Motor drive, linear bearing slide, TDC seal	FUSE, COS	9,9	6
MSA	Array	64x128 Array, Si Carrier, Optical/Mag. Mount	JWST Proto	6	5
•GSFC •JHU	Electronics	HV Serial Register, addresser	JWST Proto	6	4
	Magnet Scanner	Precision slide, linear drive motor	JWST Proto	6	5
Optics	Primary	F/2 Parabola, 0.5m, double arch, ULE glass	HUT, SRs	9	5
•JHU •JY	Secondary	Diffractive, dual-order asphere	SR-LIDOS	7	4
•Vanguard	Image Corrector	Achromatic cylindrical doublet CaF2/MgF2	HST	9	4
	Bench	CF/Al composite metering, Al mirror baseplate	HST, FUSE	9,9	4
Targeting	Computer	RIO FPGA, Imager interface	JWST Proto	6	5
•JHU •GSFC	Software	Brightest shutter per row algorithm	JWST Proto	6	4

* The first flight of FORTIS is expected in Winter 2012, after which TRL FORTIS = 7.

23 September 2011

Summary

5	:'	~ ~			
		Current/Future Performance	Implementation/ Operational Risk	Cost/Time to TRL-6; Leverage	Relevance/Impact
	Spectro/Imager MCP	Current:75Mpix, DQE =20%, Dark < 1 cnt/ cm^2/s Future: >=300Mpix DQE=?, Dark < 0.1 cnt/ cm^2/s Anticoincidence can lower still.	Robust evolvable design. Some PC fabrication risk. Mitigate with generous T&E margin.	Currently at TRL-6. Leverage in form of extensive and successful flight history. Vendor has cross-agency funding. New high efficiency PC require investment.	Workhorse of UV astronomy. Steady improvement in performance. Produces high impact science.
	Dual Order Triaxial ellipse	Current: 165 mm, OD Future: ~ 400 mm, OD feasible	Sensitivity to alignment and mounting stress unknown. Foreign vendor swamped with work.	Large (> 300 mm) holographic gratings have flown and tend to be expensive.	Enables industrial strength high efficiency spectral imaging surveys and NEW UV science.
	MSA	Current formats 128x64 & 175x385; 100 x 200 micron pitch Future formats will depend on demand.	Magnet scan required for latching. Current funding in place to implement "resonant" alternative.	Requires large, sophisticated fab facilities. Resonant latching alternative maybe key to commercial acceptance.	Drastic reduction in background compared to slitless designs. May find use as programmable pupil mask for exoplanet observations.
	Targeting Algorithms	Currently: immature and untested	Resting in live fight environment required for confident implementation.	Depends on desired level of sophistication?	The work is relevant to future implementation by JWST.
	23 September 2011	15			