Summary of the NASA Science Instrument, Observatory and Sensor System (SIOSS) Technology Assessment

H. Philip Stahl, NASA Marshall Space Flight Center Rich Barney, NASA Goddard Space Flight Center Jill Bauman, NASA Ames Research Center
Lee Feinberg, NASA Goddard Space Flight Center Dan Mccleese, Jet Propulsion Laboratory
Upendra Singh, NASA Langley Research Center

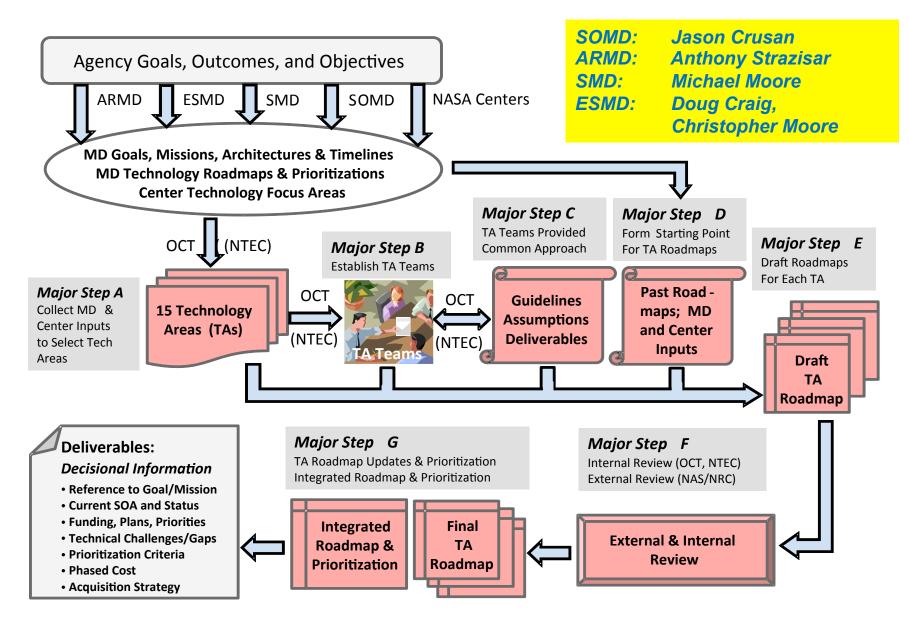
AGENDA

Office of Chief Technologist (OCT) Technology Area Roadmap

Science Instrument, Observatory and Sensor Systems TA

- Needs Assessment
- Technology Area Breakdown Structure (TABS)
- Technology Development Roadmaps
- Top Challenges
- Interdependencies with other TAs and Government Agencies
- **Budget Recommendations**

Conclusions


NASA Office of Chief Technologist

Aero-Space Technology Area Roadmap (A-STAR)

Aero-Space Technology Area Roadmap (A-STAR)

- July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA' s technology programs to meet NASA' s strategic goals.
- Initial reports were presented to the National Research Council who are currently collecting public input and preparing reviews of each Roadmap.
- Roadmaps will be updated annually and externally reviewed every 4 years consistent with the Agency's Strategic Plans.

A-STAR Process

Technology Assessment Areas

- TA1: Launch Propulsion Systems
- TA2: In-Space Propulsion Systems
- TA3: Space Power and Energy Storage Systems
- TA4: Robotics, Tele-robotics, and Autonomous Systems
- TA5: Communication and Navigation Systems
- TA6: Human Health, Life Support and Habitation Systems
- TA7: Human Exploration Destination Systems
- TA8: Scientific Instruments, Observatories, and Sensor Systems
- TA9: Entry, Descent, and Landing Systems
- TA10: Nanotechnology
- TA11: Modeling, Simulation, Information Technology, and Processing
- TA12: Materials, Structural & Mechanical Systems, and Manufacturing
- TA13: Ground and Launch Systems Processing
- TA14: Thermal Management Systems
- TA15: Aeronautics

Goals and Benefits

Develop clear NASA technology portfolio recommendations Prioritize current needs Define development plans Identify alternative paths Reveal interrelationships of between various technologies

Transparency in government technology investments Ensure needs of all NASA Mission Directorates are included

Credibility for planned NASA technology programs Coordinate with other Government agencies Broad-based input from non-government parties

Charge to TA Teams

Review, document, and organize the existing roadmaps and technology portfolios.

Collect input from key Center subject matter experts, program offices and Mission Directorates.

Take into account:

US aeronautics and space policy;

NASA Mission Directorate strategic goals and plans;

Existing Design Reference Missions, architectures and timelines; and Past NASA technology and capability roadmaps.

Recommend 10-yr Budget to Mature Technology to TRL6

Technology Assessment Content

Define a breakdown structure that organizes and identifies the TA Identify and organize all systems/technologies involved in the TA using a 20-year horizon

Describe the state-of-the-art (SOA) for each system

Identify the various paths to achieve performance goals

Identify NASA planned level of investment

Assess gaps and overlaps across planned activities

Identify alternate technology pathways

Identify key challenges required to achieve goals

Technology Assessment #8:

Science Instruments, Observatories and Sensor Systems (SIOSS)

TA8 Roadmap Team

Rich Barney (GSFC), Division Chief, Instrument Systems and Technology Division. Co-chaired 2005 NASA Science Instruments and Sensors Capability Roadmap.

Phil Stahl (MSFC), Senior Optical Physicists

Optical Components Technical Lead for James Webb Space Telescope;

Mirror Technology Days in the Government;

Advanced Optical Systems SBIR Subtopic Manager;

2005 Advanced Observatories and Telescopes Capability Roadmap.

Upendra Singh (LaRC), Chief Technologist, Engineering Directorate.

Principal Investigator for NASA Laser Risk Reduction Program (2002-2010)

Dan Mccleese (JPL), Chief Scientist

Principal Investigator of Mars Climate Sounder instrument on Mars Reconnaissance Orbiter.

Jill Bauman (ARC), Associate Director of Science for Mission Concepts.

Lee Feinberg (GSFC), Chief Large Optics System Engineer

JWST OTE Manager.

Co-chaired 2005Advanced Telescopes and Observatories Capability Roadmap.

SIOSS

SIOSS roadmap addresses technology needs to achieve NASA's highest priority objectives – not only for the Science Mission Directorate (SMD), but for all of NASA.

SIOSS Team employed a multi-step process.

- Performed an SMD needs assessment;
- Consolidated the identified technology needs into broad categories and organized them into a Technology Area Breakdown Structure (TABS);
- Generated technology development roadmaps for each TABS element;
- Investigated interdependencies with other TA Areas as well as the needs of Other Government Agencies.

SMD Needs Assessment

First step was to review governing documents (such as Decadal Surveys, roadmaps, and science plans) for each Science Mission Directorate (SMD) divisions: Astrophysics, Earth Science, Heliophysics, and Planetary Science:

2010 Science Plan, NASA Science Mission Directorate, 2010

Agency Mission Planning Manifest, 2010

New Worlds, New Horizons in Astronomy and Astrophysics, NRC Decadal Survey, 2010

Panel Reports: — New Worlds, New Horizons in Astronomy and Astrophysics, NRC Decadal Survey, 2010

Heliophysics, The Solar and Space Physics of a New ERA, Heliophysics Roadmap Team Report to the NASA Advisory Council, 2009

Earth Science and Applications from Space, NRC Decadal Survey, 2007

New Frontiers in the Solar Systems, NRC Planetary Decadal Survey, 2003

The Sun to the Earth — and Beyond, NRC Heliophysics Decadal Survey, 2003

Advanced Telescopes and Observatories, APIO, 2005

Science Instruments and Sensors Capability, APIO, 2005

Astrophysics Technology Needs

National Academy 2010 Decadal Report recommended missions and technology-development programs, (with need date): Wide Field Infrared Survey Telescope (WFIRST), 2018 Explorer Program, 2019/2023 Laser Interferometer Space Antenna (LISA), 2024 International X-ray Observatory (IXO), mid/late 2020s New Worlds Technology Development Program, mid/late 2020s *Epoch of Inflation Technology Development Program, mid/late 2020s* U.S. Contribution to the JAXA-ESA SPICA Mission, 2017 UV-Optical Space Capability Technology Development Program, mid/late 2020s TRL3-to-5 Intermediate Technology Development Program

All can be enhanced or enabled by technology development to reduce cost, schedule, and performance risks.

SMD Needs Assessment

Detailed listings of technology needs for each SMD division were tabulated which enable either:

planned SMD missions ('pull technology') or

emerging measurement techniques necessary for new scientific discovery ('push technology').

These lists were then reviewed and refined by individual mission and technology-development stakeholders.

Table 2.2.1.1 – 1 Summary of Astrophysics Technology Needs						
Mission	Technology	Metric	State of Art	Need	Start	TRL6
WFIRST	NIR detectors	Pixel array	2k x 2k	4k x 4k	2012	2014
		Pixel size	18 µm	10 µm		
UVOTP	Detector arrays:	Pixel	2k x 2k	4k x 4k	2012	2020
Push	Low noise	QE UV		> 0.5 90-300 nm		
		QE Visible		> 0.8 300-900 nm		
		Rad Hard		50 to 200 kRad		
NWTP	Photon counting arrays	Pixel array visible	512 x 512	1k x 1k	2011	2020
Push	0 1	Visible QE	80% 450-750 nm	>80% 450-900 nm		
		Pixel array NIR	128 x 128	256 x 256		
SPICA	Far-IR detector arrays	Sens. (NEP W/VHz)	1e-18	3e-20	2011	2015
ITP	5	Wavelength	> 250µm	35-430µm		2020
Push		Pixels	256	1k x 1k		
IXO	X-ray detectors	Pixel array		40 x 40 TES	2011	2015
Push		Noise	10-15 e ⁻ RMS	2-4 e ⁻ RMS		
		OE		>0.7 0.3-8 keV		
		Frame rate	100 kHz@2e ⁻	0.5 - 1 MHz@2e ⁻		
WFIRST	Detector ASIC	Speed @ low noise	100 kHz	0.5 - 1 MHz	2011	2013
IXO		Rad tolerance	14 krad	55 krad		_010
NWTP	Visible Starlight	Contrast	$>1 \times 10^{-9}$	$< 1 \times 10^{-10}$	2011	2016
	suppression:	Contrast stability		1×10^{-11} /image	2011	2010
	coronagraph or	Passband	10%, 760-840 nm	20%, at <i>V</i> , <i>I</i> , and <i>R</i>	2011	2020
	occulter	Inner Working Angle	4 λ/D	$2\lambda/D - 3\lambda/D$		
NWTP	Mid-IR Starlight	Contrast	1.65×10^{-5} , laser	$< 1 \times 10^{-7}$, broadband	2011	2016
19 99 11	suppres: interferometer	Passband mid-IR	30% at 10 µm	$> 50\% 8 \mu m$	2011	2010
NWTP	Active WFSC;		$\lambda/10,000 \text{ rms}$	$< \lambda/10,000 \text{ rms}$	2011	2020
UVOTP	Deformable Mirrors	Sensing Control (Actuators)	32 x 32		2011	2020
IXO		Facet size; Throughput	32 x 32 3x3 mm; 5%	128 x 128 60x60mm; 45%	2010	2014
-	XGS CAT grating		3x3 mm; 5%	60x60mm; 45%		2014
Various	Filters & coatings	Reflect/transmit; temp			2011	2020
Various	Spectroscopy	Spectral range/resolve			2011	2020
SPICA	Continuous sub-K	Heat lift	<1 µW	$> 1 \mu W$	2011	2015
IXO	refrigerator	Duty cycle	90 %	100 %		
IXO	Large X-ray mirror	Effective Area	0.3 m2	>3 m2 (50 m2)	2011	2020
Push	systems	HPD Resolution	15 arcsec	<5 arcsec (<1 as)		(30)
		Areal Density; Active	10 kg/m2; no	1 kg/m2; yes		
NWTP	Large UVOIR mirror	Aperture diameter	2.4 m	3 to 8 m (15 to 30 m)	2011	2020
UVOTP	systems	Figure	< 10 nm rms	<10 nm rms		(30)
Push		Stability		>9,000 min		
		Reflectivity	>60%, 120-900 nm	>60%, 90-1100 nm		
		kg/m2	30 kg/m2	Depends on LV		
U.E.D. G.E.		\$/m2	\$12M/m2	<\$1M/m2		
WFIRST	Passive stable structure	Thermal stability	Chandra	WFOV PSF Stable	2011	2014
NWTP	Large structure: occulter	Dia; Petal Edge Tol	Not demonstrated	30-80 m; <0.1mm rms	2011	2016
NWTP	Large, stable telescope	Aperture diameter	6.5 m	8 m (15 to 30 m)	2011	2020
UVOTP	structures	Thermal/dynamic WFE	60 nm rms	< 0.1 nm rms		(30)
Push	(Passive or active)	Line-of-sight jitter	1.6 mas	1 mas		
		kg/m2	40 kg/m2	<20 (or 400) kg/m2		
		\$/m2	\$4 M/m2	<\$2 M/m2		
LISA	Drag-Free Flying	Residual accel	$3x10^{-14} \text{ m/s}^2/\sqrt{\text{Hz}}$	$3x10^{-15} \text{ m/s}^2/\sqrt{\text{Hz}}$	2011	2016
NWTP	Occulter Flying	Range		10,000 to 80,000 km		
		Lateral alignment		±0.7 m wrt LOS		
NWTP	Formation flying:	Position/pointing	5cm/6.7arcmin		2011	2020
Push	Sparse & Interferometer	#; Separation	2; 2; 2 m	5; 15–400-m		
LISA	Gravity wave sensor	Spacetime Strain	N/A	1x10 ⁻²¹ /√Hz, 0.1-	2013	2019
Push	Atomic interferometer	Bandpass		100mHZ		
	Communication	Bits per sec		Terra bps	1	2014

Astrophysics Technology Needs

Astrophysics requires advancements in 5 SIOSS areas:

Detectors and electronics for X-ray and UV/optical/infrared (UVOIR);

Optical components and systems for starlight suppression, wavefront control, and enhanced UVOIR performance;

Low-power sub-10K cryo-coolers;

Large X-ray and UVOIR mirror systems (structures); and

Multi-spacecraft formation flying, navigation, and control.

Additionally, Astrophysics missions require other technologies:

Affordable volume and mass capacities of launch vehicles to enable largeaperture observatories and mid-capacity missions;

Terabit communication; and

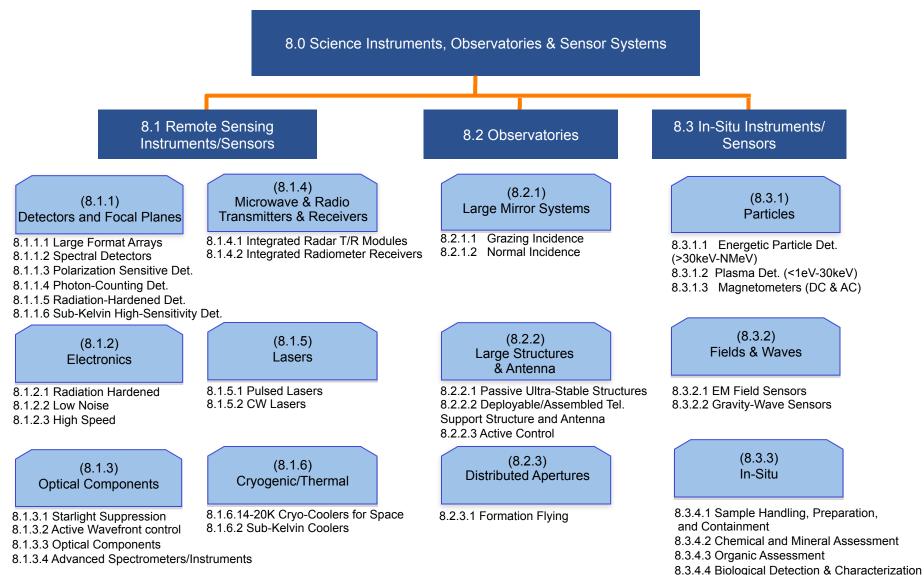
Micro-Newton thrusters for precision pointing & formation-flying control

Technology Area Breakdown Structure (TABS)

Technology needs for each SMD area were deconstructed into broad categories.

For example, many missions require new or improved detectors.

These broad categories were condensed into 3 groups:


Remote Sensing Instruments/Sensors,

Observatories, and

In-situ Instruments/Sensors.

and organized into a 4-level TABS.

TA8: Technology Area Breakdown Structure

8.3.4.5 Planetary Protection

Technology Area Breakdown Structure (TABS)

Remote Sensing Instruments/Sensors:

convert electromagnetic radiation (photons or waves) into science data or generate electromagnetic radiation (photons or waves); typically require an observatory; may be stand-alone sharing a common spacecraft bus

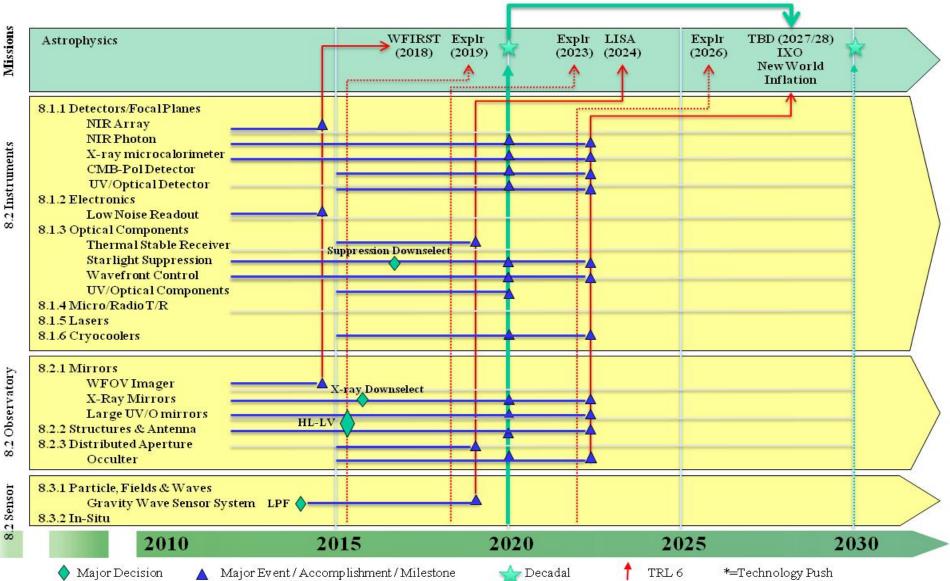
<u>Observatory:</u> collect, concentrate, and/or transmit photons.

<u>In-situ Instruments/Sensors</u> create science data from: fields or waves (AC/DC electromagnetic, gravity, acoustic, seismic, etc); particles (charged, neutral, dust, etc.); or physical samples (chemical, biological, etc.).

Technology Development Roadmaps

Development Roadmaps were developed for each SMD Division.

Roadmaps use TABS structure with direct traceability to identified mission needs for each Division.


Each technology need has specific maturity milestones (TRL-6).

Some technology needs have alternative pathway decision points.

Roadmaps explicitly includes 2020 & 2030 Decadal Reviews

Explorer missions do not have explicit technology needs.

Astrophysics Technology Development Roadmap

Top Technical Challenges

Top Challenges list was condensed from SMD assessments.

For near- & mid-term investments, goal is to advance state of art for each Challenge by 2 to 10X.

Long-term goal is to develop revolutionary capabilities

- Investment must be balanced between short- and long-term to account for differences in maturity rates.
- Top Technical Categories are not in any priority order; rather the list is organized by general need within selected timeframes.
- Actual funding decisions will be determined by open competition and peer review. Competition is the fastest, most economical way to advance the state of the art.

Top Technical Challenges

Present to 2016
In-situ Sensors for Mars Sample Returns and In-Situ Analysis Miniaturization, Sample gathering, caching, handling, and analysis
In situ drilling and instrumentation
Low-Cost, Large-Aperture Precision Mirrors
UV and Optical Lightweight mirrors, 5 to 10 nm rms, <\$2M/m2, <30kg/m2
X-ray: <5 arc second resolution, < \$0.1M/m2 (surface normal space), <3 kg/m2
High Efficiency Lasers
Higher Power, High Efficiency, Higher Rep Rate, Longer Life, Multiple Wavelengths
Advanced Microwave Components and Systems
Active and Passive Systems;
Improved frequency bands, polarization, scanning range, bandwidth, phase stability, power
High Efficiency Coolers Low Vibration, Low Cost, Low Mass;
Continuous Sub-Kelvin cooling (100% duty cycle), 70K cryostat
In-situ Particle, Field and Wave Sensors
Miniaturization, Improved performance capabilities;
Gravity Wave Sensor: 5µcy/√Hz, 1-100mHz
Large Focal Plane Arrays
All Wavelengths (FUV, UV, Visible, NIR, IR, Far-IR), Higher QE, Lower Noise;
Sensors and Packaging (4Kx4K and beyond)
Radiation hardened Instrument Components
Electronics, detectors, miniaturized instruments.
2017 to 2022 (Requires Funding Now)
High Contrast Exoplanet Technologies
High Contrast Nulling and Coronagraphic Algorithms and Components $(1x10^{-10}, broadband);$
Occulters (30 to 100 meters, < 0.1 mm rms)
Ultra Stable Large Aperture UV/O Telescopes > 50 m2 aperture, < 10 nm rms surface, < 1 mas pointing, < 15 nm rms stability, < \$2M/m2
Atomic Interferometers Order of magnitude improvement in gravity sensing sensitivity and bandwidths
Science and Navigation applications
2023 and Beyond
Advanced spatial interferometric imaging including
Wide field interferometric imaging
Advanced nulling
Many Spacecraft in Formations
Alignment, Positioning, Pointing, Number of Spacecraft, Separation

Interdependencies with other Technology Areas

Each TA identifies whether

Its Technology is Required by another TA It Needs Technology from another Area Technology flows both ways between Tas

SIOSS Technology flows both ways with all other TAs

	identified by													
Technical Areas	LAUNCH PROPULSION SYSTEMS	IN-SPACE PROPULSION SYSTEMS	SPACE POWER AND ENERGY STORAGE SYSTEMS	ROBOTICS, TELE-ROBOTICS, AND AUTONOMOUS SYSTEMS	COMMUNICATION AND NAVIGATION SYSTEMS	HUMAN HEALTH, LIFE SUPPORT AND HABITATION SYSTEMS	HUMAN EXPLORATION DESTINATION SYSTEMS	SCIENTIFIC INSTRUMENTS, OBSERVATORIES, AND SENSOR SYSTEMS	ENTRY, DESCENT, AND LANDING SYSTEMS	NANOTECH- NOLOGY	MODELING, SIMULATION, INFORMATION TECHNOLOGY AND PROCESSING	MATERIALS, STRUCTURAL AND MECHANICAL SYSTEMS, AND MANUFACTURING	GROUND AND LAUNCH SYSTEMS PROCESSING	THERMAL MANAGEMENT SYSTEMS
LAUNCH PROPULSION SYSTEMS				↓								Ļ		L
2 IN-SPACE PROPULSION SYSTEMS	ل ے		L,	L L		L		<u>ک</u>					<u>ل</u> ے	L
SPACE POWER AND ENERGY STORAGE SYSTEMS				₽										↓
4 ROBOTICS, TELE-ROBOTICS, AND 4 AUTONOMOUS SYSTEMS					\$	L L					L,	Ļ		<u>ل</u> ے
COMMUNICATION AND NAVIGATION SYSTEMS				L,				L				Ļ		L)
6 HUMAN HEALTH, LIFE SUPPORT AND HABITATION SYSTEMS				L,										Ļ
7 HUMAN EXPLORATION DESTINATION SYSTEMS						ل ے			<u>.</u>					<u>ل</u> ے
SCIENTIFIC INSTRUMENTS, OBSERVATORIES, AND SENSOR SYSTEMS	L	₽			L	L	L L		₽			Ţ		
9 ENTRY, DESCENT, AND LANDING SYSTEMS					\$		L,	↓			<u> </u>	Ļ		
10 NANOTECHNOLOGY	L			L L							_	Ļ		
11 MODELING, SIMULATION, INFORMATION TECHNOLOGY AND PROCESSING				L			L			Ļ		Ļ		L
MATERIALS, STRUCTURAL AND 12 MECHANICAL SYSTEMS, AND MANUFACTURING														<u>ک</u> ے
GROUND AND LAUNCH SYSTEMS PROCESSING				L			<u></u>	ئ ے				L L		Ļ
14 THERMAL MANAGEMENT SYSTEMS				ل ے								Ļ		
15														
			The columns are the so	ource of the information										
		needs technology from for example: launch propulsion needs technology from Space Power and Energy Storage Systems												
		provides technology to for example: in-space propulsion provides technology to Entry, Descent, and Landing systems												
	L L	technology moves in both decendance or example:in-space propulsion and launch propulsion will mutually benefit from technology developed by each other decendance				ner								

Interdependencies with other Technology Areas

SIOSS technologies have interdependencies with all areas

long-lived high-power lasers and single photon detectors for optical communication;

large aperture solar concentrators for space power & solar thermal propulsions;

machine vision systems to aid human & autonomous operations ranging from the assembly of flight hardware to AR&D to 3D terrain descent imaging;

sub-20K cryo-coolers for infrared to far-infrared optical systems and detectors.

	Table 3-1 Interdependencies between SIOSS Technology	and other Technology Areas
Technology Area	Other TA Technology required by SIOSS	SIOSS Technology required by Other TA
TA1: Launch Propulsion	Affordable access to space, Heavy lift vehicle (PUSH)	Integrated Health Monitoring (IHM) Sensors, Wireless communication source/receiver
TA2: In-Space Propulsion	Electric/ion propulsion, Micro-Newton thrusters, Solar sails, solar electric	IHM Sensors, Solar Power, High Power Lasers, Tracking & Pointing
TA3: Space Power & Storage	Radioisotopes, L2 Power Grid (PUSH)	Photovoltaic Power, Laser Power Beaming,
TA4: Robotics	Rovers, sample acquisition & containment, Aerobots, AR&D Robotic servicing (PUSH), Robotic assembly (PUSH)	Machine Vision; State Sensors, proximity, tactile; avoidance; telepresence; active ranging
TA5: Com & Nav	Terabit communication; Space Position System; Precision Formation Flying (PUSH)	Optical Communication; Precision Positioning & Laser Ranging; AR&D sensors; Star Trackers; XNAV; Quantum Communication
TA6: Human HAB	Human in-space assembly and service; Human Surface Science (PUSH)	Crew-Protection Sensors; Crew Health Sensors; Space Weather Sensors
TA7: Human Exploration	Heavy lift vehicle (PUSH); Human in-space assembly and servicing (PUSH)	Telescopes to survey NEO population; Instruments for missions to NEOs & other destinations (Moon, Mars, etc.); IHM sensors for spacesuits; High-strength lightweight windows; solar concentrators
TA9: Entry, Descent & Landing	Planetary Descent Systems, Landers, Robots, Airships; Thermal Protection	Terrain tracking and hazard avoidance sensors; IHM Sensors; Planetary atmospheric characterization sensors
TA10: Nano-Technology	Sensors for chemical/bio assessment; High-strength, lightweight, CTE materials; low-power radiation/fault tolerant electronics; nano-lasers; miniaturized instruments; micro-fluidic labs on chip; single-photon counting sensors; nano-thrusters for formation flying	Nanodevices are produced using optical lithographic methods
TA11: Modeling	Validated integrated performance modeling & model-based systems engineering	Validation Data Sensors
TA12: Materials & Structures	Low-density, high stiffness, low-CTE materials for large, deployable or assembly, active or passive, ultra-stiff/stable, precision structures (PUSH)	IHM systems; NDE systems; dimensional and positional characterization; Habitat Windows
TA13: Ground/Launch Sys	Ability to integrate very large science missions	IHM systems; corrosion detection; anomalous conditions monitoring; NDE systems; Communication
TA14: Thermal Management	Sub-20K Cryo-Coolers, Low-Power Cryocoolers	Optical emissivity coatings

Benefits to Other National Needs

SIOSS Technologies have potential benefit for a wide range of national needs, organizations and agencies:

- National Atmospheric and Oceanic Administration (NOAA)
- Department of Defense (DoD)
- Commercial Space Imaging Companies
- Department of Homeland Security (DHS)
- Department of Energy
- Department of Health and Human Services
- Food and Drug Administration
- Environmental Protection Agency

Benefits to Other National Needs

Detectors/Focal Planes

Light-weight, small-size, low-power surveillance and night vision cameras Imaging Spectroscopy (aka Hyperspectral) Systems

Remote precision thermometry for surface-activity and energy-use sensing Remote detection, identification, and quantification of gases

Micro/Radio transmit/receive (T/R) technologies

Dept. of Homeland Security detection systems, extending to THz systems

Lasers

Remote sensing of surface properties

High-bandwidth communications

Cryocoolers

Terrestrial precision metrology, quantum instruments

Mirrors/optics

Segmented Mirrors; Space Reconnaissance

Structures and Antennas

Synthetic and distributed aperture antennas

Particle, Fields, and Waves

Radiation detectors

In-Situ (unattended monitoring)

Toxic-substance monitors; Lab-on-a-chip applications

Public Input

The National Research Council received 63 SIOSS inputs.

67% (42/63)	8.1 Remote Sensing Instruments/Sensors
14% (9/63)	8.2 Observatories
19% (12/63)	8.3 In-Situ Instruments/Sensors

Most were corrections, clarifications & amplifications of content already in the report.

- Others pointed out technologies which the assessment team had missed such as needs for Gamma Ray science.
- Many were made 'collective' or 'consensus' inputs on behalf of individual science communities.

Public Input

8.1 Remote Sensing Instruments/Sensors

14 inputs regarding Detectors and Focal Planes

14 inputs regarding Electronics

9 inputs regarding Optical Components

3 input regarding Radio/Microwave;

1 input each regarding Lasers and Cryogenic/Thermal.

8.2 Observatories:

4 inputs regarding mirrors, antenna, coating

4 inputs regarding structures

1 input regarding formation flying

8.3 In-Situ Instruments/Sensors

5 inputs regarding gravity wave detection

4 inputs regarding atomic clocks

1 input each for neutral ion detection, quantum communication, mineral testing

Astrophysics Budget Planning

The Decadal Survey recommended technology funding for:

- 1) Future missions at a level of ~10% of NASA' s anticipated budget for each mission to reduce risk and cost;
- 2)New Worlds, Inflation Probe and Future UV-Optical Space Capability Definition Technology Programs to prepare for missions beyond 2020; and
- 3) "General" technology to define, mature, and select approaches for future competed missions, and "Blue sky" technology to provide transformational improvements in capability and enable undreamed of missions.

Astrophysics Budget Planning

Recommended Program and Technology Development

<u>Program</u>	<u> 10-yr Total</u>	<u>2012</u>	<u>2021</u>
IXO	\$200M	\$4M/yr	\$30M/yr
Inflation Probe	\$ 60 to \$200M	\$4M/yr	\$30M/yr
New Worlds	\$100 to \$200M	\$4M/yr	\$30M/yr
UV-Optical	\$ 40M	\$2M/yr	\$10M/yr

Recommended Augmentations to current \$40M/yr Investment

Advanced Tech	\$5M/yr
APRA	\$20M (25% increase)
Intermediate Tech	\$100M (\$2M/yr now to \$15M/yr by 2021)

10-yr Total is \$1 to \$1.2B for TA8 SIOSS

This Total should be split primarily between TABS 8.1 Science Instruments and TABS 8.2 Observatory.

Astrophysics has limited TABLS 8.3 Sensor Systems needs.

Astrophysics Budget Planning

Decadal recommended a 10-yr Budget of \$1B to \$1.2B

Assuming that all Decadal Recommendations are for External Funding, it is necessary to also define a NASA internal budget.

Assume NASA Internal Funding = 50% of External Funding Allocated 75% of NASA Funding to Labor Allocated 25% of NASA Funding to ODC Thus \$60M/yr = approx 200 FTEs/yr and \$15M/yr ODC

This gives a Total TA8 SIOSS 10-ry Budget of \$1.5B to \$1.8B just to support the needs of Astrophysics, for example:

8.1	Science Instruments	\$ 800 M
8.2	Observatory	\$ 600 M
8.3	Sensor Systems	\$ 200 M

Decadal Analysis

Similar analysis is required for the other Science Mission Directorate Decadal Reports:

Earth Science

Heliophysics

Planetary

Conclusion

Technology advancement is required to enable NASA's high priority missions of the future.

- To prepare for those missions requires a roadmap of how to get from the current state of the art to where technology needs to be in 5, 10, 15 and 20 years.
- SIOSS identifies where substantial enhancements in mission capabilities are needed and provides strategic guidance for the agency's budget formulation and prioritization process.
- The initial report was presented to the NRC in Oct 2010 (<u>http://www.nasa.gov/offices/oct/home/roadmaps/index.html</u>). And, the NRC review report is expected in late summer 2011.