UVOIR Technology Needs
(Cosmic Origins Program Analysis Group)

Ken Sembach
(Space Telescope Science Institute)
April 26, 2011

On behalf of the COPAG Executive Committee,
Chair: Chris Martin
COPAG Charge

- Identify a focused set of mission-enabling technologies relevant to Cosmic Origins future missions
- Provide a nucleus for the community to speak with a coherent voice in technology prioritization
- Provide input to Strategic Astrophysics Technology (intermediate TRL) NRA and selection process by end of 2011, for 2012+ proposal opportunities
- Provide input to APRA (low TRL) technology selection process
- Provide input to NASA and NRC Technology Roadmapping
- Make tough choices for highest-value efforts given limited resources
COPAG Tasks

- **Determine technology focus areas for a large UVOIR mission in the next decade**
 - Possible areas of investment
 - Detectors
 - Optical coatings
 - Gratings
 - Multiplexing elements / IFUs
 - Wavefront sensing and control
 - Lightweight mirrors
 - This activity was divided into two tasks – one to identify the needs for a standalone UVOIR Cosmic Origins mission, and one to identify the needs for a joint UVOIR Cosmic Origins / Exoplanet mission

- **Determine technology focus areas for future Far-IR instruments**
 - Not part of today’s discussion
Task 1 Activity
(Independent of ExoPAG)

- Develop strawman reference mission concept as “target”
- Assess the TRL/maturity level of various technologies
- Determine time/$/investment to reach necessary TRL level to support mission concept development
- Prioritize and develop a portfolio based on one or more Figures of Merit and supporting rationale
 - Ex. FOM: Expected increase in “Effective Telescope Aperture” by 2018
Task 2 Activity
(In Conjunction with ExoPAG)

- Develop strawman joint reference mission concept as “target”, coordinating with ExoPAG
- Consider internal and external starlight suppression concepts
- Determine requirements for compatibility
 - E.g., Coatings: \(R > R_{\text{min}} \), Variations < XX%
- Assess the TRL/maturity level of relevant technologies
- Determine time/$$/investment to reach necessary TRL level to support mission concept development
- Prioritize and develop a portfolio based on one or more Figures of Merit and supporting rationale
Selected Astro2010 White Papers

- Several key Astro2010 white paper references:
 - *Technology Investments to Meet the Needs of Astronomy at Ultraviolet Wavelengths in the 21st Century* (technology white paper #54 – Sembach et al.)
 - THEIA: Telescope for Habitable Exoplanets and Interstellar/Intergalactic Astronomy (RFI #132 – Kasdin et al.)
 - Advanced Technology Large Aperture Space Telescope - ATLAST (RFI #13 – Postman et al.)

Key advances could be made with a telescope with a 4-meter-diameter aperture with large field of view and fitted with high-efficiency UV and optical cameras/spectrographs operating at shorter wavelengths than HST. This is a compelling vision that requires further technology development. The committee highly recommends a modest program of technology development to begin mission trade-off studies, in particular those contrasting coronagraph and star-shade approaches, and to invest in essential technologies such as detectors, coatings, and optics, to prepare for a mission to be considered by the 2020 decadal survey. A notional budget of $40 million for the decade is recommended.
Increasing Throughput

- The throughput of optical systems at ultraviolet wavelengths has considerable headroom for growth.
- Even Optical/IR designs can be improved via multiplexing.
- Technology investments can be traded against aperture size.

Table 1: Exposure Times for Telescopes With and Without New Technology Investments

<table>
<thead>
<tr>
<th>Flux (erg cm(^{-2}) s(^{-1}) Å(^{-1}))</th>
<th>GALEX FUV (mag)</th>
<th>Exposure Time to Reach S/N =10 at R = 20,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HST / COS</td>
</tr>
<tr>
<td>1x10(^{-15})</td>
<td>19.2</td>
<td>9.8 ksec</td>
</tr>
<tr>
<td>1x10(^{-16})</td>
<td>21.7</td>
<td>115 ksec</td>
</tr>
<tr>
<td>1x10(^{-17})</td>
<td>24.2</td>
<td>2.9 Msec</td>
</tr>
</tbody>
</table>

Calculations assume a 2-mirror OTA with 12% secondary linear obscuration, feeding a single reflection spectrograph with a detector dark count rate of 2.7x10\(^{-4}\) cnt s\(^{-1}\) per resolution element. Optimized telescope configurations assume a factor of 4 improvement in system throughput compared to existing (Hubble) technology.
Detectors (1/3)

- Improving quantum efficiency is a key issue
 - Particularly, band-averaged values
 - Matching to optical λs is important for data quality uniformity when exposing for similar times

Solar-blind Ultraviolet QE Curves

<table>
<thead>
<tr>
<th>Wavelength (Å)</th>
<th>COS FUV MCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1216 Å</td>
<td>~34%</td>
</tr>
<tr>
<td>1300 Å</td>
<td>~30%</td>
</tr>
<tr>
<td>1400 Å</td>
<td>~23%</td>
</tr>
<tr>
<td>1500 Å</td>
<td>~20%</td>
</tr>
<tr>
<td>1600 Å</td>
<td>~13%</td>
</tr>
<tr>
<td>1750 Å</td>
<td>~10%</td>
</tr>
</tbody>
</table>

COS NUV MAMA

<table>
<thead>
<tr>
<th>Wavelength (Å)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 Å</td>
<td>~10%</td>
</tr>
<tr>
<td>2500 Å</td>
<td>~9%</td>
</tr>
<tr>
<td>3000 Å</td>
<td>~4%</td>
</tr>
</tbody>
</table>

Blades et al. 2001
Other key detector issues

- Better photocathode materials are needed
 - Example: AlGaN, GaN show great promise (QEs > 70% at 122 nm) but have high dark noise and are not yet suitable for large formats
 - Considerable work is needed to extend results to semi-transparent mode or to use in opaque mode on microchannel plates

Flatfields

(Left) HST-COS flat field image of a 10 x 13 mm area of the far-ultraviolet MCP detector. The fiber bundles imprint an obvious fixed-pattern noise features in the image. (Right) A new glass process MCP flat field for a similar image area, demonstrating the absence of fixed-pattern noise (Siegmund et al. 2007).
Detectors (3/3)

- **Other key detector issues**

 - **Format**
 - Long MCP detectors (1st order apps)
 - Large-format CCDs (echelle apps)

 - **Backgrounds (photon counting)**

 - **Radiation hardness**
 - Charge transfer efficiency primarily an issue for large CCDs in space
 - p-channel vs. n-channel can help
 - CMOS (or APS) devices hold great promise but have higher read noise and lower QE than conventional CCDs; need development

 - **Operation at “room” temperature**
 - Contamination of UV optics and detectors is a major concern at cryogenic temperatures

HST-COS far-ultraviolet detector showing the two abutting microchannel plate detector segments (each 85 x 10 mm) curved to the focal plane of the spectrograph.
Optical Coatings

- Technological “tall poles”
 - Smoothness, surface quality/uniformity, polarization
 - High reflectivity (>90%) coatings over large bandpasses (100 nm – 1µm)
 - Compatibility with use at UV wavelengths is highly desirable
 - Coatings like Al+LiF may be difficult to handle on large optics

![Absolute Efficiency - COS G130M](image)

<table>
<thead>
<tr>
<th>HST OTA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1150 Å</td>
<td>26%</td>
</tr>
<tr>
<td>1200 Å</td>
<td>41%</td>
</tr>
<tr>
<td>1500 Å</td>
<td>41%</td>
</tr>
<tr>
<td>2000 Å</td>
<td>49%</td>
</tr>
<tr>
<td>2500 Å</td>
<td>60%</td>
</tr>
<tr>
<td>3000 Å</td>
<td>61%</td>
</tr>
</tbody>
</table>

Light loss from Three 70% reflections = Ten 90% reflections = Twenty-One 95% reflections
Optics

- Design complexity can improve as optics and coatings improve
- Needs
 - Large lightweight optics with areal densities of <20 kg/m² (and supporting pointing accuracy/stability)
 - Large aberration-correcting diffraction gratings
 - Fast optics for some applications (off-axis telescope designs – e.g., FUSE)
Optical Designs

- Multiplexing can improve efficiency by orders of magnitude
 - Slitless spectroscopy
 - Multi-object aperture arrays
 - Integral field units
 (even all-reflecting IFUs in UV)

- JWST is taking advantage of spectroscopic multiplexing

- Grism spectroscopy with HST-WFC3 is being applied to fields ranging from ExoPlanets to Cosmology
Key Points

- Improvements in throughput present new science opportunities
 - Bringing UV throughput on par with optical/NIR wavelengths will require better detectors and optical coatings

- Improvements in UV throughput can be cost effective
 - Factor of 4 should be achievable (equivalent to doubling primary)

- Detectors need dedicated investment strategy
 - QE improvements, photon-counting, large formats, environmental tolerance

- Optics and coatings need to be improved as well
 - Reflections (currently) cost dearly in the ultraviolet
 - Instrument design possibilities abound with higher reflectivity