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OBJECTIVE:

What factors moderate the
growth of massive
galaxies?
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SPT-CLJ2344-4243 (Phoenix) -
HST WFC3 :

20 kpc

McDonald et al. (2015)




MERGER INDUCED STAR FORMATION

SDSS J1531+3414 (z=0.335)
- Ny .
- Merging central o
. | » \ellipticals
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Tremblay et al. (2014)
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MERGER INDUCED STAR FORMATION

SDSS J1336-0331 (z=0.176). ' - F160W, F125W

HST/WFC3 imaging from Gladders et al. SGAS Sample G:-F606W
: F390wW

15” / 45 kpc
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WHAT ABOUT HIGH REDSHIFT?

= There already exists a population of quenched early-type
galaxies beyond z > 1 (e.g., Glazebrook et al. 2004).

» High redshift candidates have %2 - ¥4 the effective radius

when comparing z = 1.4 galaxies to present day (e.g., Daddi
et al. 2005).

= Yet we still observe some unique systems forming stars near
present day.
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BCG PROGENITOR INVESTIGATION

* Need to identify high redshift progenitors and determine
when star formation is no longer sufficient to sustain further
growth.

= Consider local environment to identify precursors to today's
dense environments.

= COSMOS is complete above 10'%:T Mg to z ~ 3 (Laigle et al.
2016).

= Several methods are in use to identify galaxy progenitors.
= Mass Selection
= Constant co-moving number density
= Evolving co-moving number density

e.g., van Dokkum et al. (2010), Torrey et al. (2017)
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COSMOS
SURVEY

Relative Sizes of HST ACS Surveys

‘e -

-

COSMOS

30

12
cosmos.astro.caltech.edu NASA, ESA



CONSTANT CO-MOVING NUMBER

DENSITY METHOD

= As star formation is correlated to galaxy stellar mass, a
population of a given mass will grow in a similar manner.
The density of that population remains unchanged.
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EVOLVING CO-MOVING NUMBER

DENSITY METHOD

= Mergers complicate this picture. While major mergers at
this extreme mass range are rare, they will happen over time
and especially in proto-cluster
environments.

= To correct for mergers,
the selection density increases
with increasing redshift as more
merger partners are selected.

10° |

Rodriguez-Gomez et al. (2015), Torrey et al. (2017, & private comm.)
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EVOLVING CO-MOVING NUMBER
DENSITY METHOD
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COSMOS DENSITY MAPS
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PROGENITOR CHARACTERIZATION
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PROGENITOR CHARACTERIZATION
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PROGENITOR GROWTH RESULTS

Time since Big Bang (Gyr)
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PROGENITOR GROWTH RESULTS
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PROGENITOR GROWTH RESULTS
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LIGHT PROFILE EVOLUTION
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PROGENITOR MORPHOLOGY

Time since Big Bang (Gyr)
2.9

8 6 59 4 3
2501 | | I | — S;)heroid
----- Unclassifiable
_ Irregular
200 —-= Disk
o 150}
o)
=
-
Z 100
50 :
O I- ..... -lltl-_l-l-l-lll-l-l: ------ ;_ ..... —— -i
0.5 1.0 1.5 2.0 2.5 3.0

27

Redshift (z) Cooke et al. (2019)



EVOLUTION OF MORPHOLOGY
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COOKE ET AL. (2019) CONCLUSIONS

= Result: BCG progenitors grow through 3 phases consistent
with observed merger rates, but independent of
environment until low redshift (z ~ 1.1).

= The majority of BCG progenitors transition to a red,
quiescent state after z ~ 1.1. However there is no
detectable evolution in Sérsic index.

= Progenitors become more spheroidal with decreasing
redshift in dense environments, while those in the field
become diskier.

= How does this compare to the general population?

29



STAR FORMATION MAIN SEQUENCE

THE STAR-FORMING MAIN SEQUENCE AND OUTLIERS

A

N
OMBER of STARS FORMING

? . THE GREEN VALLEY

RED AND DEAD GALAXIES

NOMBER Of EXISTING STAL?}S

Harry Ferguson

http://candels-collaboration.blogspot.com/2013/02/star-formation-in-mountains.html



STATE OF THE STAR FORMATION

MAIN SEQUENCE (SFMS)

= Shape of the SFMS has been observed out to z ~ 2.5
(Whitaker et al. 2012, Lee et al. 2015).

= Environmental effects on star formation have been observed
out to z~1 (e.g., Darvish et al. 2018), but it is debatable at
higher redshifts (Elbaz et al. 2007, Erfanianfar et al. 2015).

= Goal: Identity what redshifts and stellar mass bins any
environmental dependence manifests.

= Build off previous COSMOS results, to higher redshifts and
with sensitivity to environment.

eg. van Dokkum et al. (2010), Torrey et al. (2017)
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COSMOS MASS-COMPLETE SAMPLE
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SFMS EVOLUTION WITH REDSHIFT
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SFMS EVOLUTION SELECTED BY

NUVrJ COLOR-COLOR
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COSMOS SFMS CONCLUSIONS

= Result: We do not see evidence for a dependence with
environment at z > 1. We also see no difference in the
quiescent population as well.

= Next Steps: We are reducing the publically available WFC3/
IR data from the MAST archive to expand the available
Bulge-to-Total luminosity ratios to limit ourselves to only
disk-dominated systems.

= As of now, the local environment is observed to play little
part in affecting the median SFR behavior of galaxies at a
given mass.
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SF SHUTDOWN DUE TO AGN

®* The radiant energy from an actively accreting SMBH can
heat and unbind the cold gas component of the host galaxy
(e.g. Hopkins et al. 2006).

= However some targets remain star-forming while X-ray bright (e.g.
(Salome et al. 2015; Mahoro et al. 2017, Perna et al. 2018).

" Goal: Understand how AGN shut down star-formation

= Find the rare objects where the cold gas remains while an AGN is
active. CO S

= Kirkpatrick et al. (2020) identified
such a population using the Stripe 82X
survey. (LaMassa et al. 2016)

Nature



COLD QUASARS

= Cold quasars are a population of unobscured, IR-detected
quasar.

= [ x > 10%* ergs/s
" S, > 30 mJy

= Combination of X-ray and IR detection selects for the narrow
timeframe where the AGN has not cleared the gas.

= Found 4% of X-ray and optically selected quasars, loosely
constraining their stage to last ~1076 yrs.

= SFR ~ 200-1000 M/yr

CQ507,z=1.6
DECam grz
Kirkpatrick et al. (2020)




COLD QUASAR FOLLOW UP

= Kirkpatrick et al. followed up
on a sample of lower X-ray
luminosity targets.
0.5x the original X-ray cutoff

= SOFIA HAWC+ Band C (89 microns)
total intensity observations.

= Met with technical difficulties at
first....

= i
=

NASA




COLD QUASAR FOLLOW UP

= Kirkpatrick et al. followed up on a sample of lower X-ray
luminosity targets with SOFIA HAWC+ Band C (89 microns)
total intensity observations.

" Detection! 75.42 +/-14.2 mJy at (SNR = 5.31) at z = 0.405!
CcQ4479

30"x 30" | SDSS gri

Cooke et al. (2020, submitted
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WHY SOFIA?

=
.........

SOFIA HAWC+ Band C
Observations

CIGALE + SOFIA
==== CIGALE NO SOFIA
= SED3FIT + SOFIA
=== SED3FIT NO SOFIA

—1 0 1 2 3
Iog10 (Arest—frame) [/‘l’m]

10

40
Cooke et al. (2020, submitted)



COOKE ET AL. (2020, SUB) RESULTS

= We find that cold quasars behave similarly to previously
observed samples of Herschel-detected broad-line AGN
(Sun+2015)

= We use SDSS optical spectra and Stripe 82X X-ray to find SMBH
accretion rates.

= SMBH and stellar component are 9.5
growing in lock-step, indicating —— Sen+2015 low-z
this is truly an early stage where oof A o
SFR is not shutting down. - A Xoay, +05Gyr
2 8.5}
= Future Work: Delve deeper into = F
comparing cold quasars with = |
red quasars (Urrutia et al. 2012, < -
Glikman et al. 2017) and 80 75 h
hotDOGs (Ricci et al. 2017). B | ;
6-575 10 : T 12

log10(M.) [Mg]
Cooke et al. (2020, submitted)



REVIEW AND THE FUTURE

= We find that BCGs at z < 1 can exhibit rare episodes of star
formation triggered by major gas rich mergers.

= Progenitors at z > 1 are a diverse population of ellipticals
and irregulars which are often star-forming at z > 2.

= Examined environmental dependences at higher redshifts than
previously studied.

= Cold quasars represent AGN hosts at the transition point
between star-forming and quiescent

= Provide new information on the co-temporal growth of the SF and
AGN.

people.ku.edu/~k739c541
kcooke@ku.edu
Q@astrokevincooke 22
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