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OBJECTIVE:

What factors moderate the 
growth of massive 

galaxies?	
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McDonald	et	al.	(2015)	

SPT-CLJ2344-4243 (Phoenix) 
HST WFC3 

7	



Tremblay et al. (2014) 
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MERGER INDUCED STAR FORMATION



Cooke et al. (2016) 
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MERGER INDUCED STAR FORMATION

SDSS J1336-0331 (z=0.176)

V/H-band dust map

R: F160W, F125W(
G: F606W(
B: F390W(

HST/WFC3 imaging from Gladders et al. SGAS Sample

15” / 45 kpc

3’’ SDSS Fiber



¡  There already exists a population of quenched early-type 
galaxies beyond z > 1 (e.g., Glazebrook et al. 2004). 

¡ High redshift candidates have ½ - ¼ the effective radius 
when comparing z = 1.4 galaxies to present day (e.g., Daddi 
et al. 2005). 

¡  Yet we still observe some unique systems forming stars near 
present day. 

10	

WHAT ABOUT HIGH REDSHIFT?



¡ Need to identify high redshift progenitors and determine 
when star formation is no longer sufficient to sustain further 
growth.   

¡ Consider local environment to identify precursors to today’s 
dense environments. 

¡ COSMOS is complete above 1010.1 M¤ to z ~ 3 (Laigle et al. 
2016). 

¡  Several methods are in use to identify galaxy progenitors. 
§ Mass Selection 
§ Constant co-moving number density 
§  Evolving co-moving number density 
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 BCG PROGENITOR INVESTIGATION

e.g., van Dokkum et al. (2010), Torrey et al. (2017) 
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COSMOS  
SURVEY

NASA, ESA cosmos.astro.caltech.edu



¡  As star formation is correlated to galaxy stellar mass, a 
population of a given mass will grow in a similar manner. 
The density of that population remains unchanged. 

M*ear ly corresponds to the same Ngal as M*, la te. 
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CONSTANT CO-MOVING NUMBER 
DENSITY METHOD

TIME

Cooke et al. (2019) 



¡ Mergers complicate this picture.  While major mergers at 
this extreme mass range are rare, they will happen over time 
and especially in proto-cluster  
environments. 

 
¡  To correct for mergers, 

the selection density increases 
with increasing redshift as more  
merger partners are selected. 

14	

EVOLVING CO-MOVING NUMBER  
DENSITY METHOD 

Rodriguez-Gomez et al. (2015), Torrey et al. (2017, & private comm.) 
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EVOLVING CO-MOVING NUMBER 
DENSITY METHOD	

Davidzon et al. (2017) 
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EVOLVING CO-MOVING NUMBER 
DENSITY METHOD	

Nz	~	0.5	

Davidzon et al. (2017) 
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EVOLVING CO-MOVING NUMBER 
DENSITY METHOD	

Nz	~	2	

Davidzon et al. (2017) 
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EVOLVING CO-MOVING NUMBER 
DENSITY METHOD	

Nz	~	3	

Davidzon et al. (2017) 
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COSMOS DENSITY MAPS

Darvish et al. (2015) 

z ~ 0.85 

Dense

Field

Intergroup

>	2	ΣBackground	

1	<		Σ/ΣBackground	<	2	

<	ΣBackground	



¡ MAGPHYS: 
§  Total
§  Stellar (no attenuation) 
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PROGENITOR CHARACTERIZATION



¡  Obj:541686 
¡  MAGPHYS: 

§  Total
§  Stellar (no  

attenuation) 

¡  SED3FIT: 
§  Total
§  Pure Stellar 
§  Att. Stellar 
§  Dust 
§  AGN 
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PROGENITOR CHARACTERIZATION

da Cunha et al. (2008), Berta et al. (2013) 
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PROGENITOR GROWTH RESULTS

Cooke et al. (2019) 
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PROGENITOR GROWTH RESULTS

Era 1:�
SF


Cooke et al. (2019) 
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PROGENITOR GROWTH RESULTS

Era 1:�
SF


Era 2:�
SF+Mergers


Cooke et al. (2019) 
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PROGENITOR GROWTH RESULTS

Era 1:�
SF


Era 3:�
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Cooke et al. (2019) 
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LIGHT PROFILE EVOLUTION
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PROGENITOR MORPHOLOGY

Cooke et al. (2019) 



¡ We find that BCG 
progenitor morphologies 
are indistinguishable 
between different 
environments above z ~ 1. 

¡ Quiescent progenitors 
become more spheroidal 
over time, while star-
forming progenitors 
maintain a composite 
structure. 
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EVOLUTION OF MORPHOLOGY
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Cooke et al. (2019) 



¡  Result: BCG progenitors grow through 3 phases consistent 
with observed merger rates, but independent of 
environment until low redshift (z ~ 1.1). 

¡  The majority of BCG progenitors transition to a red, 
quiescent state after z ~ 1.1.  However there is no 
detectable evolution in Sérsic index. 

¡  Progenitors become more spheroidal with decreasing 
redshift in dense environments, while those in the field 
become diskier. 

¡ How does this compare to the general population? 
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COOKE ET AL. (2019) CONCLUSIONS
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STAR FORMATION MAIN SEQUENCE

Harry Ferguson 
 http://candels-collaboration.blogspot.com/2013/02/star-formation-in-mountains.html 



¡  Shape of the SFMS has been observed out to z ~ 2.5 
(Whitaker et al. 2012, Lee et al. 2015). 

¡  Environmental effects on star formation have been observed 
out to z~1 (e.g., Darvish et al. 2018), but it is debatable at 
higher redshifts (Elbaz et al. 2007, Erfanianfar et al. 2015). 

¡ Goal: Identify what redshifts and stellar mass bins any 
environmental dependence manifests. 

¡  Build off previous COSMOS results, to higher redshifts and 
with sensitivity to environment. 
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STATE OF THE STAR FORMATION 
MAIN SEQUENCE (SFMS)

eg. van Dokkum et al. (2010), Torrey et al. (2017) 
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COSMOS MASS-COMPLETE SAMPLE
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SFMS EVOLUTION WITH REDSHIFT
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SFMS EVOLUTION SELECTED BY 
NUV J COLOR-COLORr
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¡  Result: We do not see evidence for a dependence with 
environment at z > 1.  We also see no difference in the 
quiescent population as well. 

¡ Next Steps:  We are reducing the publically available WFC3/
IR data from the MAST archive to expand the available 
Bulge-to-Total luminosity ratios to limit ourselves to only 
disk-dominated systems. 

¡  As of now, the local environment is observed to play little 
part in affecting the median SFR behavior of galaxies at a 
given mass. 
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COSMOS SFMS CONCLUSIONS
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 SF SHUTDOWN DUE TO AGN

¡  The radiant energy from an actively accreting SMBH can 
heat and unbind the cold gas component of the host galaxy 
(e.g. Hopkins et al. 2006). 
§ However some targets remain star-forming while X-ray bright (e.g. 

(Salome et al. 2015; Mahoro et al. 2017, Perna et al. 2018).  

¡ Goal: Understand how AGN shut down star-formation 
§  Find the rare objects where the cold gas remains while an AGN is 

active. 

¡  Kirkpatrick et al. (2020) identified 
such a population using the Stripe 82X 
survey. (LaMassa et al. 2016) 
 

Nature 
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COLD QUASARS

¡ Cold quasars are a population of unobscured, IR-detected 
quasar. 
§  Lx > 1044 ergs/s 
§  S250 > 30 mJy 
§ Combination of X-ray and IR detection selects for the narrow 

timeframe where the AGN has not cleared the gas.   

¡  Found 4% of X-ray and optically selected quasars, loosely 
constraining their stage to last ~10^6 yrs. 

¡  SFR ~ 200-1000 M/yr 
 
¡  log10(M*/Msol) ~ 10.5-11.2 

CQ 507, z = 1.6 
DECam grz 

Kirkpatrick et al. (2020) 
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COLD QUASAR FOLLOW UP

¡  Kirkpatrick et al. followed up  
on a sample of lower X-ray  
luminosity targets.  

 0.5x the original X-ray cutoff 

¡  SOFIA HAWC+ Band C (89 microns)  
total intensity observations. 

¡ Met with technical difficulties at  
first.... 

NASA 
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COLD QUASAR FOLLOW UP

¡  Kirkpatrick et al. followed up on a sample of lower X-ray 
luminosity targets with SOFIA HAWC+ Band C (89 microns) 
total intensity observations. 

¡ Detection! 75.42 +/-14.2 mJy at (SNR = 5.31) at z = 0.405! 
CQ4479	 Cooke et al. (2020, submitted) 
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WHY SOFIA?

Cooke et al. (2020, submitted) 
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COOKE ET AL. (2020, SUB) RESULTS

¡  We find that cold quasars behave similarly to previously 
observed samples of Herschel-detected broad-line AGN 
(Sun+2015) 
§  We use SDSS optical spectra and Stripe 82X X-ray to find SMBH 

accretion rates. 

¡  SMBH and stellar component are 
growing in lock-step, indicating  
this is truly an early stage where 
SFR is not shutting down. 

¡  Future Work:  Delve deeper into 
comparing cold quasars with  
red quasars (Urrutia et al. 2012,  
Glikman et al. 2017) and  
hotDOGs (Ricci et al. 2017). 

Cooke et al. (2020, submitted) 



¡ We find that BCGs at z < 1 can exhibit rare episodes of star 
formation triggered by major gas rich mergers. 

¡  Progenitors at z > 1 are a diverse population of ellipticals 
and irregulars which are often star-forming at z > 2. 
§  Examined environmental dependences at higher redshifts than 

previously studied. 

 
¡ Cold quasars represent AGN hosts at the transition point 

between star-forming and quiescent 
§  Provide new information on the co-temporal growth of the SF and 

AGN.  
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REVIEW AND THE FUTURE

people.ku.edu/~k739c541 
kcooke@ku.edu 

     @astrokevincooke 
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NEED TO GET YOUR STUDENTS UP 
TO SPEED?

¡ Try our astronomy paper  
research and reading guide! 

¡ Built for getting your new  
undergraduate and  
graduate students  
going into the  
world of paper reading! 

¡ arXiv: 2006.12566 

Cooke et al. (2020, arxiv) 


