Parallax bias in Gaia EDR3

Why it matters, what it looks like, how it can be determined, and what to expect in the future

Lennart Lindegren Lund Observatory, Sweden

References (with links to ADS)

[BRG] Bhardwaj, Rejkuba, de Grijs, ... (2021), RR Lyrae variables in M53..., ApJ 909, 200 [ERH] El-Badry, Rix, Heintz (2021), A million binaries from GEDR3..., MNRAS 506, 2269 [FLA] Fabricius, Luri, Arenou, ... (2021), GEDR3 catalogue validation, A&A 649, A5 [FSV] Flynn, Sekhri, Venville, ... (2022), GEDR3 bright star parallax zero-point... MNRAS 509, 4276 Groenewegen (2021), The parallax zero-point offset from Gaia EDR3 data, A&A 654, A20 [G] [HYB] Huang, Yuan, Beers, ... (2021), The parallax zero-point of GEDR3..., ApJ 910, L5 Lindegren, Bastian, Biermann, ... (2021), GEDR3 parallax bias..., A&A 649, A4 [LBB] Li, Casertano, Riess (2022), A Maximum Likelihood Calibration of the Tip of the Red..., arXiv:2022.11110 [LCR] Lindegren, Klioner, Hernández, ... (2021), GEDR3 the astrometric solution, A&A 649, A2 [LKH] Maíz Apellániz (2022), An estimation of the Gaia EDR3 parallax bias..., A&A 657, A130 [M] Maíz Apellániz, Pantaleoni González, Barbá (2021), Validation of the accuracy..., A&A 649, A13 [MPB] Owens, Freedman, Madore, Lee (2022), Current challenges in Cepheid Distance Calibrations..., ApJ 927, 8 [OFM] Ren, Cheng, Zhang, ... (2021), GEDR3 parallax zero-point..., ApJ 911, L20 [RCZ] Riello, De Angelo, Evans, ... (2021), GEDR3 photometric content, A&A 649, A3 [RDE] [RCY] Riess, Casertano, Yuan, ... (2021), Cosmic distances..., ApJ 908, L6 Rybizki, Green, Rix, ... (2022), A classifier for spurious astrometric solutions..., MNRAS 510, 2597 [RGR] Stassun, Torres (2021), Parallax systematics ... in GEDR3, ApJ 907, L33 [ST] Vasiliev, Baumgardt (2021), GEDR3 view on Galactic clusters, MNRAS 505, 5978 [VB] Wang, Yuan, Huang (2022), A spatially dependent correction of GEDR3 parallax..., AJ 163, 149 [WYH] Zinn (2021), Validation of the GEDR3 parallax..., ApJ 161, 214 [Z]

Cepheid distance scale

Current Challenges in Cepheid Distance Calibrations Using Gaia Early Data Release 3

Kayla A. Owens^{1,2} (D), Wendy L. Freedman^{1,2} (D), Barry F. Madore^{1,3} (D), and Abigail J. Lee^{1,2} (D) Published 2022 March 2 • © 2022. The Author(s). Published by the American Astronomical Society.

The Astrophysical Journal, Volume 927, Number 1

Citation Kayla A. Owens et al 2022 ApJ 927 8

Source of Uncertainty	$\sigma_{ m LMC}$	$\sigma_{ m SMC}$
Metallicity Effects	0.028	0.053
Zero-point Prescription (L21b)	0.037 \	0.037
Additional ZP-offset	0.045 🖌	0.045
Reddening Coefficient Variation	0.002	0.002
Total [mag]	0.065	0.079
Percent Error	3.0%	3.6%

Table 10 Irreducible EDR3 Cepheid Error Budget

80% of the total error variance!

NASA Stars Science Interest Group, 15 March 2022

Cf. Riess et al. (2021) [RCY]: Cepheid distance scale to 0.022 mag (1%)

Zero-point errors are of a size similar to the random errors

NASA Stars Science Interest Group, 15 March 2022

Parallax bias - spatial variations on large and small scales

0.1° smoothed EDR3 parallaxes in LMC (G=16-18)

Parallax bias - variations with magnitude and colour

NASA Stars Science Interest Group, 15 March 2022

The EDR3 parallax correction recipe in [LBB] = Lindegren et al. (2021), A&A 649, A4

LBB estimated the parallax bias

$$Z = \mathrm{E}\left[\varpi_{\mathrm{EDR3}} - \varpi_{\mathrm{true}}\right]$$

as a function of magnitude (G), colour ($\nu_{\rm eff}$ = effective wavenumber) and ecliptic latitude (β) using a linear expansion in basis functions:

$$Z(G, \nu_{\text{eff}}, \beta) = \sum_{i} \sum_{j} \sum_{k} z_{ijk} g_i(G) c_j(\nu_e)$$

Python code at https://gitlab.com/icc-ub/public/gaiadr3_zeropoint (there are separate functions Z_5 , Z_6 for sources with 5- and 6-parameter solutions)

NASA Stars Science Interest Group, 15 March 2022

 $_{\mathrm{eff}}) b_k(\beta)$

Z₅ versus G at three different colours [LBB]

NASA Stars Science Interest Group, 15 March 2022

The LMC provided additional constraints on the dependence on colour

Some determinations of the bias (Z) and residual bias (ΔZ)

bias:

 $Z = E \left[\varpi_{EDR3} - \varpi_{true} \right]$

residual bias: $\Delta Z = E \left[\varpi_{EDR3} - Z_{[LBB]} - \varpi_{true} \right]$

Reference	Type of object	N	G	$\nu_{\rm eff} \; [\mu {\rm m}^{-1}]$	Z [μ as
Bhardwaj et al. [BRG]	RR Lvr	350	9-14	1.59 ± 0.04	$-7\pm$
Fabricius et al. [FLA]	VLBI	40	8.3		$-10 \pm$
,,	Ceph	1372	15.7		$-28\pm$
"	RR Lyr	318	18.1		$-30 \pm$
"	LMC	318	12.8		$-4 \pm$
"	SMC	114	12.5		$-6 \pm$
Huang et al. [HYB]	RC	$65 \mathrm{k}$	10 - 15	1.47 ± 0.05	-26
Ren et al. [RCZ]	EW	110 k	13–19	1.50 ± 0.10	-29 ± 1
77					-25 ± 4
Riess et al. [RCY]	Ceph	75	6-11	1.42 ± 0.06	
Stassun & Torres [ST]	DEB	76	5 - 12	1.60 ± 0.10	$-37\pm$
Vasiliev & Baumgardt [VB]	GC	170	13-21		
Zinn [Z]	RGB	2000	9-13	1.45 ± 0.05	-22
· · · · · · · · · · · · · · · · · · ·					

NASA Stars Science Interest Group, 15 March 2022

(Lindegren, EDR3 Workshop, June 2021)

(NB: some authors define ΔZ with the opposite sign!)

Residual parallax bias ΔZ after application of Z₅ from [LBB]

NASA Stars Science Interest Group, 15 March 2022

 \leftarrow expected $\Delta Z = 0$

Methods for the determination of Z (and their problems)

A. Direct comparison: sources with parallax known a priori or by independent methods

- AGN/quasars (faint, restricted range of colours, not in Galactic plane)
- other techniques: HST, VLBI (small number of objects)
- special objects: detached EB, asteroseismic RGB, ... (extinction, surface brightness calibration, ...)
- B. Joint solution with calibration of standard candles

various PL relations: Cepheids, RR Lyr, contact EB, ... (extinction, metallicity, ...)

Kayla A. Owens^{1,2} (D), Wendy L. Freedman^{1,2} (D), Barry F. Madore^{1,3} (D), and Abigail J. Lee^{1,2} (D) Published 2022 March 2 • © 2022. The Author(s). Published by the American Astronomical Society.

The Astrophysical Journal, Volume 927, Number 1

Citation Kayla A. Owens et al 2022 ApJ 927 8

Gaia Early Data Release 3

Methods for the determination of Z (and their problems)

A. Direct comparison: sources with parallax known a priori or by independent methods

- AGN/quasars (faint, restricted range of colours, not in Galactic plane)
- other techniques: HST, VLBI (small number of objects)
- special objects: detached EB, asteroseismic RGB, ... (extinction, surface brightness calibration, ...)
- B. Joint solution with calibration of standard candles
 - various PL relations: Cepheids, RR Lyr, contact EB, ... (extinction, metallicity, ...)
- C. Differential methods
 - binaries (optical pairs)
 - open clusters (membership, only in Galactic plane)
 - globular clusters (crowding)
 - dwarf galaxies incl. LMC, SMC (crowding, ...)

NASA Stars Science Interest Group, 15 March 2022

63		Mel_71	1.1	Trumpler_5
		NGC6093		NGC2158
ley_39		NGC6939		Berkeley_66
419		NGC5139	14	NGC2301
242		M22		NGC7044
		King_11	1.1	King_9
142		NGC6752		M16
243		Berkeley_20		M50
789		NGC2477		NGC3201
236	-	NGC2194		M4
940		IC166		NGC2516
09		M55		M67
231		M46		Berkeley_30
		NGC5822	11	NGC2420
ley_18		NGC1798		NGC362
755		Collinder_261		M52
660		NGC3532		NGC2204
		Berkeley_21	14	IC_1311
766		IC4665		M11
087		M38		Pismis_2
352	۰.	M10	12	IC_4651
266		NGC6067		NGC884
		NGC3114	۰.	NGC2192
360	-	NGC6723	1.	NGC129
541		NGC6204		NGC6397
	-	NGC3960		TRGB zone
		M2	_	Cepheid zone (Riess et al 2021)
<u>3</u>		NGC1193		offset : 15 ± 7 uas
324		NGC6649		QSO zone
er_6		NGC869		Zinn et al 2021 astroseismology
				offset : 15 ± 3 uas
				Huang et al 2021 bright RC stars offset : 10 ± 1 uas
÷1				
• •				

Flynn et al. (2021) MNRAS 509, 4276 [FSV]

Residual parallax bias from cluster data (G = 9-11)

- Flynn et al. (2021) MNRAS 509, 4276 [FSV]
- G = 9 11:
- Blue stars: [LBB] undercorrects
- Red stars: [LBB] overcorrects

Summary - What can be expected in the future?

- Gaia data releases
 - (E)DR3: 2.8 years of data
 - DR4: 5.5 years of data
 - DR5: ~10? years of data (7.5 years to date)
- Random parallax errors will be reduced by a factor 0.6 to 0.52 (best case)
- There is potential to reduce systematic uncertainties down to $\pm 1 \,\mu as$ using a combination of methods (mainly QSOs + differential)
- Dependence on astrophysical models should be minimized (to avoid risk of circularity)
- Very bright stars (G < 6) and extreme colours (BP–RP < 0 or > 2.5) will remain very difficult
- A lot more can be done already with (E)DR3 data

Gaia DR3 (13 June 2022): >100,000 RR Lyr with metallicities

Gaia Image of the Week, 2022 Feb 25