

Advances in developing mirror coating technologies for enhancing the FUV reflectance of protected aluminum coatings

Manuel A. Quijada,¹ Javier del Hoyo,¹ Luis Rodriguez de Marcos,^{1,2} Emrold Gray,¹ & Edward Wollack¹

¹ Goddard Space Flight Center, Greenbelt, MD 20771 ²The Catholic University of America, Washington, DC 20375

Overview & Objectives

- Program Element Update
 - ✓ Research Chamber Fluorination
- Conclusions
- Acknowledgments

LUVOIR Concept Telescope

Task Description

- ✓ Deposit high performance optical broadband (FUV -> IR) mirror coatings:
 - ✓ Fluorination/passivation of Al-based coatings.
 - ✓ Atomic Layer Deposition (ALD) layers of AlF₃.
 - ✓ Ion assisted depositions for low-absorption metal-fluoride to protect Al mirrors.

Driver / Need

✓ Broadband coatings (90-2,500 nm) have been identified as an "Essential Goal" in the technology needs for a future Large-Aperture Ultraviolet-Optical-Infrared Space Telescope (LUVOIR and HabEx).

✤ Benefits

- ✓ High throughput & high signal-to-noise ratio (SNR) over a broad spectral range.
- ✓ Enabling technology for astrophysics and optical exoplanet sciences (in shared platform).

Exoplanets

Hybrid PVD Passivation/Fluorination Chamber

XeF₂ is a dry-vacuum based method of reaction and requires no plasma or other activation minimizing damage to substrate.

Reactive fluorine compound with low bond energy used (e.g. XeF_2 with 133.9 kJ/Mole).

Heating of the XeF_2 may also be used if compound is not sufficiently reactive for increased selectivity.

Research Coating Chamber Upgrades

XeF₂ Gas feed components capable of continuous flow or pulsed flow.

Inside view of RC with 2-materia PVD deposition system.

R&D for combined PVD & fluorination of Al-based high performance FUV coatings.

Chamber is in operation and experimentations on producing various schemes of fluorination are ongoing

Reflectance Result rPVD: Al+LiF

Highest R at H Lyman-alpha ever reported ^(C), obtained twice ^(C)

UV-STIG Virtual Splinter Session

• Awesome stability of the mirrors with the highest R at Ly alpha

• R data of mirrors with and without Ti seed layer meeting HabEx and LUVOIR R requirements

FUV Reflectance Al+XeMgF₂

Conclusions

- A fluorination with XeF₂ combined with PVD of Al+LiF coatings (rPVD) further improves durability of Al+LiF mirror coatings.
- These rPVD Al+LiF (**XeLiF**) samples have shown:
 - ✓ The highest ever reported reflectance for Al+LiF at Lyman-Alpha of 92%
 - ✓ Sample reflectance (@ Lyman-Alpha) only degraded 91% after 6 months of storage in the lab and going through 50% (1 week) and 60% (1 week) relative humidity tests.
 - ✓ AFM surface characterization indicates a 25% reduction in surface roughness for these samples when compared to conventional Al+LiF samples.
- This more stable (Al+xeLiF) mirror coating could be a viable option to the current baseline for LUVOIR (Al+LiF+MgF₂)

Technology Component	Implementation Options	State of the Art	Capability Needed	FY19 TRL	In LUVOIR Baseline?
Far-UV Broadband Coating	Al + eLiF + MgF ₂	Meets performance requirements, but requires demonstration on meter-class optics; requires validation of uniformity, repeatability, environmental stability	<pre>>50% reflectivity (100-115nm) >80% reflectivity (115-200nm) >88% reflectivity (200-850nm) >96% reflectivity (> 850nm) <1% reflectance nonuniformity (over entire primary mirror) over corongraph bandpass (200 - 2000 nm)</pre>	3	~
	Al + eLiF + AlF3			3	
	Al + eLiF	Meets performance requirements, but is environmentally unstable		5	

- NASA Astrophysics Research Analysis grant # 15-APRA15-0103
- NASA Strategic Astrophysics Technology grant # 17-SAT17-0017
- GSFC FY21 & FY22 Internal Research & Development (IRAD) Program

Backup Slides

Storage in dry box (Humidity ≈ 35%)

LiF-protected Al mirrors from other projects After 15 months After 3 months

January 11th, 2022

UV-STIG Virtual Splinter Session

'Hot' vs. 'rPVD'

Sample	Composition	Thickness	Fabrication Temp.	
	LIE	22.9 nm	Ambient	
<u>rPVD</u>	Al+XeF2 → AlF3	2 nm		
	Al	65 nm		
Hat	LIE	17.5 nm	266 C for 1h	
пог	Al	100 nm		

Optimization Al+LiF (eLiF) Hot Coatings

Wavelength (nm)

The SISTINE primary mirror after coating with Al+LiF in 2-meter chamber at GSFC.

Stability of AIF₃- protected Al/LiF mirrors

UV-STIG Virtual Splinter Session

Protection Al+LiF with ALD-AlF₃ Deposition

January 11th, 2022

UV-STIG Virtual Splinter Session

Fleming, B.; Quijada, M.; Hennessy, J.; Egan, A.; Del Hoyo, J.; Hicks, B.A.; Wiley, J.; Kruczek, N.; Erickson, N.; France, K.; Appl. Opt. 2017, 56, 9941–9950.

Aging of rPVD and Protected Al+LiF+MgF₂ Samples

2-Meter Chamber Upgrades

Deposition of a ion-assisted physical vapor deposition (IAPVD) of FUV-optimized Al+metal fluoride overcoats (LiF, MgF2, and Al+AlF₃) in the large 2-meter coating chamber.

Lyman-Alpha Optical Monitor

Acquisition of Ion Gun, optical monitor, deposition controller and PVD power supplies upgraded.

UV-STIG Virtual Splinter Session