CALA Burdley Device Gaus Coppertunity for Famil's Space Astrophysics PM 30-500 mirrors 2.5m Spectrometer PS00 N/A N/A 8-10-10 W He-1/2 2.000 ME 50.00 mirrors Devicty Cateron Devicty Cateron Devicty Cateron Image: Cateron	S-E L2	50-100 mK					Cost	Basis	Technology
growth, and arrown in the contric used by tudying gas-place configures Image: Section 1000000000000000000000000000000000000			-100 mK S-	S-E L2	3000 Kg	Falcon-9	~\$1B FY08	Flagship Costing	moderate resolution grating- type dispersive spectrometers
Introduction the control or any sequence.Image: Control of the control of the control or any sequence.Image: Control of the cont									
detection therbid suing tomo-graphic intensity mapping to the far-iff solution line, particular, for the fast good park planes in in<									
with sensitive spectral probes of the energetics of the atomic and molecular or or< or< or <thow< th=""></thow<>									
And bits Add See (2 > 35): Before the first stars formed, the gas is expected to have cooled rapidly relative to the CMB, causing the H feature to appear in above the H line through the Wouthysen-field effect. Cooled rapidly relative to the CMB, causing the H feature to appear in above the H line through the Wouthysen-field effect. Cooled rapidly relative to the CMB, causing the H feature to appear in above the H line through the Wouthysen-field effect. Cooled rapidly relative to the CMB, causing the H feature to appear in above the H line through the Wouthysen-field effect. Cooled rapidly relative to the CMB, causing the H feature to appear in above the H line through the Wouthysen-field effect. Coole I appear in a started formed of the H line through the Wouthysen-field effect. Coole I appear in a started formed of the H line through the floce the Coole H line through the floce the Coole H line through the Wouthysen-field effect. Coole I appear in a started formed of the H line through the floce the Coole H line thre Coole H line through the floce the Coole H line through									
Image: Cooled rapidly relative to the CMB, causing the H I feature to appear in absorption. Image: Cooled rapidly relative to the CMB, causing the H I feature to appear in absorption. Image: Cooled rapidly relative to the CMB, causing the H I feature to appear in absorption. Image: Cooled rapidly relative to the CMB, causing the H I feature to appear in absorption. Image: Cooled rapidly relative to the CMB, causing the H I feature to appear in absorption. Image: Cooled rapidly relative to the CMB, causing the H I feature to appear in absorption. Image: Cooled rapidly relative to the H I line through the Wouthuysen-Field effect. Image: Cooled rapidly relative to the H I line through the Wouthuysen-Field effect. Image: Cooled rapidly relative to the H I line through the Wouthuysen-Field effect. Image: Cooled rapidly relative to the H I line through the Wouthuysen-Field effect. Image: Cooled rapidly relative to the H I line through the Wouthuysen-Field effect. Image: Coole C	Far side of the Moon		ot	of the	2 1000 Kg	N/A	<\$1B	PSD analog	Detector and Signal Processing in the Radio
Image: Couples to the H line through the Wouthuysen-Field effect.Image: Couples to the H line through the Wouthuysen-Field effect.Image: Couples to the H line through the Wouthuysen Field effect.Image: Couples to the H line through the Wouthuysen Field effect.Image: Couples to the H line through the Wouthuysen Field effect.Image: Couples to the H line through the Wouthuysen Field effect.Image: Couples to the H line through the Kouthuysen Field effect.Image: Couples to the H line through the Kouthuysen Field effect.Image: Couples to the H line through the Kouthuysen Field effect.Image: Couples to the H line through the Kouthuysen Field effect.Image: Couples to the H line through the Kouthuysen Field effect.Image: Couples to the H line through the Kouthuysen Field effect.Image: Couples to the H line through the Kouthuysen from stars and blackImage: Couples to the H line through the Kouthuysen from stars and blackImage: Couples to the H line through the Kouthuysen field effect.Image: Couples to the H line through the Kouthuysen from stars and blackImage: Couples to the H line through the Kouthuysen field effect.Image: Couples to the H line through the Kouthuysen from stars and blackImage: Couples to the H line through the Kouthuy the Kouthuy the H line through the Kouthuy the H line through the Kouthuy the Kouthuy the H line through the Kouthuy the H line through the Kouthuy the Kouthuy the H line through the Kouthuy the H line through the Kou									
stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficiently heat the cold H Image: Stellar remnants (e.g., black holes) emit X-rays, which efficient X-rays efficiently heat the cold holes he									
holes started ionizing the gas in giant bubbles within the IGM. Image: Constraint of the IGM and the IGM and the IGM. Image: Constraint of the IGM and the IGM									
(Northwestern) Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of galaxies, from those with sub-clumps to those at the edge of the universe Image: Section of those at the edge of those at the edge of									
universe universe Image and the set of	N/A	Ambient	nbient N	N/A	N/A	N/A	N/A	N/A	large format x-ray arrays
deep sky surveys for clusters and QSO/AGN,									
supernova remnants (SNRs) in galaxies such as the LMC, SMC and Andromeda Image: SNRs, such as Cas-A Image: SNRs, such as Cas-A Image: SNRs, such as Cas-A Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and the Vela/Puppis region. Image: SNRs, such as the Cygnus loop and								-	
knots in galactic SNRs such as Cas-A image scale structure of the ISM, nearby clusters of galaxies, and large SNRs, and large SNRs, such as the Cygnus loop and the Vela/Puppis region. image scale structure of the ISM, nearby clusters of galaxies, and large SNRs, and large									
the large scale structure of the ISM, nearby clusters of galaxies, and large SNRs, such as the Cygnus loop and the Vela/Puppis region. the large scale structure of the ISM, nearby clusters of galaxies, and large SNRs, such as the Cygnus loop and the Vela/Puppis region. Comparison of the ISM, nearby clusters of galaxies, and large SNRs, such as the Cygnus loop and the Vela/Puppis region. Spectrometer N/A									
such as the Cygnus loop and the Vela/Puppis region. Image: Comparison of the cygnus loop and the Vela/Puppis region. Image: Comparison of the cygnus loop and the Vela/Puppis region. Image: Comparison of the cygnus loop and the Vela/Puppis region. Image: Comparison of the cygnus loop and the Vela/Puppis region. Image: Comparison of the cygnus loop and the Vela/Puppis region. Image: Comparison of the cygnus loop and the Vela/Puppis region. Image: Comparison of the cygnus loop and the Vela/Puppis region. Image: Comparison of the cygnus loop and the Vela/Puppis region. Image: Comparison of the cygnus loop and the Vela/Puppis region. Image: Comparison of the cygnus loop and the Vela/Puppis region. Image: Comparison of the cygnus loop and the Vela/Puppis region. Image: Comparison of the cygnus loop and the Vela/Puppis region. Image: Comparison of the cygnus loop and the Vela/Puppis region. Image: Comparison of the cygnus loop and the Vela/Puppis region. Image: Comparison of the cygnus loop and the Vela/Puppis region. Image: Comparison of the cygnus loop and the cyg									
(Northwestern) ray cm^2 eff. Image: Cm/2									
	N/A	N/A	A N	N/A	N/A	N/A	N/A	N/A	Advances in electronics, computing power, and data storage and retrieval with high time resolution
binary x-ray sources									
monitor the hard x-ray sky, provide hard x-ray maps, and even provide a stringent test of the general relativistic Shapiro delay.									
P. Roming (SWRI) Death of Massive Stars (DoMaS) Probe Soft X- 0.2-SkeV / 0.7- 1m/1m/0. Camera+spectro R=40/1000/1 1/1"/1" 2.4Sr/30'30' 1.6 x 10-11 erg cm-2 s-1 N/A N/A N/A ray/NIR/FU 2.5micron / 130- V 300nm 5m graphs 000 11/1"/1" 2.4Sr/30'10' 1.6 x 10-11 erg cm-2 s-1 Å- 1 @1.6µm in 1s 2.4x10-17 ergcm-2 s-1 Å- 1 @1.700 Åin 1s	GEO	N/A	A G	GEO	N/A	N/A	\$762M FY1	6 NICM	GaN MCP - all other @ TRL 6 already
Nature of the First Stars and Their Contribution to Reionization	1						-	-	

Paper PI	Title Science Topics	Deschand	Wavelength / Freq.	Aporturo	Unstrumont	Constral Dec	Angular Dec	Field of View	Consitivity	N(pixels)		T(Instr)	Orhit	Mass	hy	Cost	Desis	Technology
	Title Science Topics Nature and Death of Massive Star Progenitors	Passballu	wavelength / Freq.	Aperture	Instrument	spectrar kes.	Aliguiar Res.	Field of View	Sensitivity	in(pixels)	I(Iel)	T(Instr.)	Orbit	Mass	LV	Cost	Basis	Technology
1	Ancillary Targets - lower redshift sub-luminous, short, and long GRBs;			1														
1	thermonuclear bursts; flare stars; SNe Ia breakouts; superfast X-ray transients;																	
1	classical no- vae; tidal disruption events; blazars; AGNs; soft γ-ray re- peater																	
	flares; and hot OB stars with winds																	
l l																		
H.A. MacEwen		UV-Vis-IR	N/A	4m	Mirror	N/A	N/A	N/A	N/A	N/A	Ambient	Ambient	cislunar	5000 Kg	N/A	N/A	N/A	Modularized mirro
(Reviresco LLC)					deployment													deployment with a view to 10m+
i i																		telescopes in the
1																		future
L													L					
1	Pure Technology Paper	1	1	1	1	1		1					1		1		1	1
P.A. Scowen	HORUS – THE HIGH ORBIT ULTRAVIOLET-VISIBLE SATELLITE	NUV-	200-1075nm / 100-	2.4m	Camera /	R=40,000	0.05"	14'	1 x 10-16 erg cm-2 s-1	64.000	Ambient	Ambient	ES-L2	N/A	Delta-IV	\$1.28B FY17	Decadal	Large focal plane
(ASU)		Visible /	170nm	2.411	Spectrograph	11-40,000	0.05	14	1 x 10 10 cig cill 2 3 1	04,000	Ambient	Ambiene	10 12	174	Denta IV	91.2001117	2010	arrays, dichroics,
í í		FUV															study	MCPs - all TRL 5 o
1																	extrapola	t higher
l																	ed	
i	an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun																	
ļ	to determine how frequently solar systems form and survive																	
1	Survey all major star forming regions in the Magellanic Clouds to sample star																	
1	formation in an initial regime of low metallicity applicable to high-redshift galaxies.																	
L	•																	
1	Extend the star formation survey to galaxies in the nearby universe in order to																	
L	increase the range of galaxy interaction and metallicity environments probed.																	
1	Measure star formation and metal production rates in the distant universe to																	
1	determine how galaxies assemble																	
	h	1		1.	la.	1	In our contraction of the second seco	1	1	1			1	h. e.	h. e.	1 .	h	1-
F.R. Hearty	Deep Survey Telescope: Exploring the First Billion Years	NIR/MIR	0.5-5 microns	4m	Camera	16 filter	0.2"/pixel	1.6 degrees	~27mag in 60 s	829 Gpix	70 K	70K	N/A	N/A	N/A	requires	N/A	Same as WFIRST- AFTA with
(Penn State U.)						bands										"breaking" of cost curve		emerging tech for
1																to fit inside		other aspects
i																\$1B		
	How was large-scale baryonic structure assembled in the early Universe? DST			1														
1	will identify at high redshift: the first QSOs, the earliest massive galaxies and																	
	galaxy clusters, high redshift supernovae of all varieties																	
1	DST will identify at low redshift: Host galaxy type and redshift for each			1			1								1			
	supernova discovered by LSST, progenitor star for many future supernovae																	
1	from Local Group to Virgo cluster, Tidal streams and halo structures for Local																	
1	Group galaxies																	
1	DST will identify in our Solar System: potentially hazardous asteroids, near-							-										
i	Earth asteroids down to 30m, planet (and dwarf planet) resident in Kuiper Belt,																	
i	Inner Oort Cloud, and possibly Oort Cloud itself																	
i i	1		1	1	1	1	1		1	1	1		1		1	1	1	1
S. Rinehart	The Space High-Angular Resolution Probe for the InfraRed (SHARP-IR)	FIR	20-160 microns	12m	Interferometer	N/A	0.3-2.75"	N/A	N/A	N/A	Ambient	4K	N/A	N/A	N/A	>MIDEX	SPIRIT &	Detector
(GSFC)				baseline	1								1				FKSI	development
······						1												
, , ,																	experienc	
	to observe enviral stamps land, and melanulas such as unstances well as																experienc e	already proven
	to observe crucial atoms, ions, and molecules such as water as well as																experienc e	
	continuum sources																experienc e	
	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured																experienc e	
	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer																experienc e	
	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured																experienc e	
	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system	NI IV-	200-1100cm	1 2m	Camera	12 filter	0.1"/nivel	14'	1 x 10-16 prg cm-2 s-1	64.000	Ambien*	Amhient	FS-12	N/A	N/A	\$358M EV17	e	already proven
P.A. Scowen	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer	NUV- Visible	200-1100nm	1.2m	Camera	12 filter channels	0.1"/pixel		1 x 10-16 erg cm-2 s-1	64,000	Ambient	Ambient	ES-L2	N/A	N/A	\$358M FY17	e	already proven
	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system		200-1100nm	1.2m	Camera		0.1"/pixel	14'	1 x 10-16 erg cm-2 s-1	64,000	Ambient	Ambient	ES-L2	N/A	N/A	\$358M FY17	e Two	already proven
P.A. Scowen	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun	Visible	200-1100nm	1.2m	Camera		0.1"/pixel	14'	1 x 10-16 erg cm-2 s-1	64,000	Ambient	Ambient	ES-L2	N/A	N/A	\$358M FY17	e Two Team-X	already proven
P.A. Scowen	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE	Visible	200-1100nm	1.2m	Camera		0.1"/pixel		1 x 10-16 erg cm-2 s-1	64,000	Ambient	Ambient	ES-L2	N/A	N/A	\$358M FY17	e Two Team-X	already proven
P.A. Scowen	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun to determine how frequently solar systems form and survive Survey all major star forming regions in the Magellanic Clouds to sample star	Visible	200-1100nm	1.2m	Camera		0.1"/pixel	14'	1 x 10-16 erg cm-2 s-1	64,000	Ambient	Ambient	ES-L2	N/A	N/A	\$358M FY17	e Two Team-X	already proven
P.A. Scowen	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun to determine how frequently solar systems form and survive Survey all major star forming regions in the Magellanic Clouds to sample star formation in an initial regime of low metallicity applicable to high-redshift	Visible	200-1100nm	1.2m	Camera		0.1"/pixel	14'	1 x 10-16 erg cm-2 s-1	64,000	Ambient	Ambient	ES-L2	N/A	N/A	\$358M FY17	e Two Team-X	already proven
P.A. Scowen	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun to determine how frequently solar systems form and survive Survey all major star forming regions in the Magellanic Clouds to sample star	Visible	200-1100nm	1.2m	Camera		0.1"/pixel	14'	1 x 10-16 erg cm-2 s-1	64,000	Ambient	Ambient	ES-L2	N/A	N/A	\$358M FY17	e Two Team-X	already proven
P.A. Scowen	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun to determine how frequently solar systems form and survive Survey all major star forming regions in the Magellanic Clouds to sample star formation in an initial regime of low metallicity applicable to high-redshift galaxies. Extend the star formation survey to galaxies in the nearby universe in order to	Visible	200-1100nm	1.2m	Camera		0.1"/pixel	14'	1 x 10-16 erg cm-2 s-1	64,000	Ambient	Ambient	ES-L2	N/A	N/A	\$358M FY17	e Two Team-X	already proven
P.A. Scowen	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun to determine how frequently solar systems form and survive Survey all major star forming regions in the Magellanic Clouds to sample star formation in an initial regime of low metallicity applicable to high-redshift galaxies.	Visible	200-1100nm	1.2m	Camera		0.1"/pixel	14'	1 x 10-16 erg cm-2 s-1	64,000	Ambient	Ambient	ES-L2	N/A	N/A	\$358M FY17	e Two Team-X	already proven
P.A. Scowen (ASU)	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun to determine how frequently solar systems form and survive Survey all major star forming regions in the Magellanic Clouds to sample star formation in an initial regime of low metallicity applicable to high-redshift galaxies. Extend the star formation survey to galaxies in the nearby universe in order to increase the range of galaxy interaction and metallicity environments probed.	Visible				channels											e Two Team-X studies	already proven
P.A. Scowen (ASU) A. Cooray (UC	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun to determine how frequently solar systems form and survive Survey all major star forming regions in the Magellanic Clouds to sample star formation in an initial regime of low metallicity applicable to high-redshift galaxies. Extend the star formation survey to galaxies in the nearby universe in order to	Visible	200-1100nm	1.5m	Spectroscopic		0.1"/pixel		1 x 10-16 erg cm-2 s-1	64,000		Ambient		N/A	N/A	\$358M FY17	e Two Team-X studies	already proven
P.A. Scowen (ASU)	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun to determine how frequently solar systems form and survive Survey all major star forming regions in the Magellanic Clouds to sample star formation in an initial regime of low metallicity applicable to high-redshift galaxies. Extend the star formation survey to galaxies in the nearby universe in order to increase the range of galaxy interaction and metallicity environments probed.	Visible				channels											e Two Team-X studies	aiready proven
P.A. Scowen (ASU) A. Cooray (UC	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun to determine how frequently solar systems form and survive Survey all major star forming regions in the Magellanic Clouds to sample star formation in an initial regime of low metallicity applicable to high-redshift galaxies. Extend the star formation survey to galaxies in the nearby universe in order to increase the range of galaxy interaction and metallicity environments probed. Cosmic Dawn Intensity Mapper	Visible			Spectroscopic	channels											e Two Team-X studies	already proven
P.A. Scowen (ASU) A. Cooray (UC	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun to determine how frequently solar systems form and survive Survey all major star forming regions in the Magellanic Clouds to sample star formation in an initial regime of low metallicity applicable to high-redshift galaxies. Extend the star formation survey to galaxies in the nearby universe in order to increase the range of galaxy interaction and metallicity environments probed. Cosmic Dawn Intensity Mapper pioneering observations of the Lyman-α, Hα and other spectral lines of interest	Visible			Spectroscopic	channels											e Two Team-X studies	aiready proven
P.A. Scowen (ASU) A. Cooray (UC	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun to determine how frequently solar systems form and survive Survey all major star forming regions in the Magellanic Clouds to sample star formation in an initial regime of low metallicity applicable to high-redshift galaxies. Extend the star formation survey to galaxies in the nearby universe in order to increase the range of galaxy interaction and metallicity environments probed. Cosmic Dawn Intensity Mapper	Visible			Spectroscopic	channels											e Two Team-X studies	aiready proven
P.A. Scowen (ASU) A. Cooray (UC	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun to determine how frequently solar systems form and survive Survey all major star forming regions in the Magellanic Clouds to sample star formation in an initial regime of low metallicity applicable to high-redshift galaxies. Extend the star formation survey to galaxies in the nearby universe in order to increase the range of galaxy interaction and metallicity environments probed. Cosmic Dawn Intensity Mapper ploneering observations of the Lyman-α, Hα and other spectral lines of interest throughout the cosmic history, but especially from the first generation of distant, faint galaxies	Visible			Spectroscopic	channels											e Two Team-X studies	aiready proven
P.A. Scowen (ASU) A. Cooray (UC	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun to determine how frequently solar systems form and survive Survey all major star forming regions in the Magellanic Clouds to sample star formation in an initial regime of low metallicity applicable to high-redshift galaxies. Extend the star formation survey to galaxies in the nearby universe in order to increase the range of galaxy interaction and metallicity environments probed. Cosmic Dawn Intensity Mapper pioneering observations of the Lyman-a, Ha and other spectral lines of interest throughout the cosmic history, but especially from the first generation of distant, faint galaxies produce a three- dimensional tomographic view of the epoch of reionization	Visible			Spectroscopic	channels											e Two Team-X studies	aiready proven
P.A. Scowen (ASU) A. Cooray (UC	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun to determine how frequently solar systems form and survive Survey all major star forming regions in the Magellanic Clouds to sample star formation in an initial regime of low metallicity applicable to high-redshift galaxies. Extend the star formation survey to galaxies in the nearby universe in order to increase the range of galaxy interaction and metallicity environments probed. Cosmic Dawn Intensity Mapper ploneering observations of the Lyman-α, Hα and other spectral lines of interest throughout the cosmic history, but especially from the first generation of distant, faint galaxies produce a three- dimensional tomographic view of the epoch of reionization (EOR), mapping Lyα emission from galaxies and the intergalactic medium (IGM)	Visible			Spectroscopic	channels											e Two Team-X studies	aiready proven
P.A. Scowen (ASU) A. Cooray (UC	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun to determine how frequently solar systems form and survive Survey all major star forming regions in the Magellanic Clouds to sample star formation in an initial regime of low metallicity applicable to high-redshift galaxies. Extend the star formation survey to galaxies in the nearby universe in order to increase the range of galaxy interaction and metallicity environments probed. Cosmic Dawn Intensity Mapper pioneering observations of the Lyman-α, Hα and other spectral lines of interest throughout the cosmic history, but especially from the first generation of distant, faint galaxies produce a three dimensional tomographic view of the epoch of reionization (GN), mapping Lyα emission from galaxies and the intergalactic medium (IGM) map out, for example, Hα emission from 20.2 to reionization, providing a three	Visible			Spectroscopic	channels											e Two Team-X studies	aiready proven
P.A. Scowen (ASU)	continuum sources to enable discoveries in the areas of star and planet formation, AGN, obscured star forming galaxies at high redshifts, cool objects in general, and the outer solar system ORION UV-VISIBLE PROBE an imaging census of all high-mass star formation sites within 2.5 kpc of the Sun to determine how frequently solar systems form and survive Survey all major star forming regions in the Magellanic Clouds to sample star formation in an initial regime of low metallicity applicable to high-redshift galaxies. Extend the star formation survey to galaxies in the nearby universe in order to increase the range of galaxy interaction and metallicity environments probed. Cosmic Dawn Intensity Mapper ploneering observations of the Lyman-α, Hα and other spectral lines of interest throughout the cosmic history, but especially from the first generation of distant, faint galaxies produce a three- dimensional tomographic view of the epoch of reionization (EOR), mapping Lyα emission from galaxies and the intergalactic medium (IGM)	Visible			Spectroscopic	channels											e Two Team-X studies	aiready proven

																		
	Title Science Topics	Passband	Wavelength / Freq.		Instrument	Spectral Res.	Angular Res.	Field of View	Sensitivity		T(Tel)	T(Instr.)	Orbit	Mass	LV	Cost	Basis	Technology
	Galaxy Evolution Spectroscopic Probe (GESP)	NUV / NIR	200-400nm / 800-	1.5m	MOS	R~500	Adjustable		2x10-18 ergcm-2 s-1 Å-1	243 slits	Ambient	Ambient	N/A	N/A	N/A	<\$1B		slit generator,
			1600nm				slits	deg		1			1				cost"	convex grating
																	approach	
	GESP will study the physics of the ISM, accretion and star formation, stellar									1		1	1					
	feedback, and galactic winds									1		1						
	GESP will answer: what are the roles of stellar feedback, AGN feedback, and			+		+				+		<u>+</u>	+	+	+	+		
										1								
	dark energy in driving galaxy evolution									1		1	1					
M. Robberto	A Near-IR All-Sky Spectroscopic Probe	NIR	0.8-1.8 microns	1.5m	Slit selector +	R~400	0.75" slits	0.4 sq deg	AB~23 mag in 15 mins	N/A	Ambient	Ambient	N/A	N/A	N/A	<\$1B	previous	DMD @ TRL 6
(STScI)					spectrograph				, i i i i i i i i i i i i i i i i i i i	1		1	1		1		ESA small	-
(5150)					speeceograph					1							mission	
										1		1						
	4									 							proposal	
	to perform the most accurate measurement of the expansion history of the									1								
	Universe (using baryonic acoustic oscillations) and the growth history of cosmic									1		1						
	large scale structure (using redshift space distortions), measuring the redshifts			1						1	1	1						
	of ~500 million galaxies regardless on their spectral type and environment									1		1						
										1								
	to understand galaxy build-up and evolution by analyzing the detailed																	
	information contained in the same spectra									1		1						
		1		1	1	1			1	<u> </u>		1	1	1	1			
			1	1	1	1	1	1	1		1				1.	1	1	1
C.K. Walker (U.	Terahertz Space Telescope	THz	30-300 microns	20m	Coherent	R~10^3-10^6	0.4-4"	N/A	~1x10-18watt/Hz1/2	N/A	Ambient	4-6K	N/A	600 Kg	N/A	<\$750M	unclear	inflatable spherica
Arizona)				inflated	cameras					1								reflector, THz
		1	1			1				1			1	1	1			detectors
	Star formation through cosmic time			1									1		1	1	1	
	Galaxy formation and evolution: from guasars, Seyferts, and starbursts to the	1	1	1		1							1	1	+	+	1	
	Milky Way									1		1	1					
	IVIIIKY WAY									1		1						
	Life cycle of the interstellar medium											1						
	Galactic ecology																	
	Astrochemistry																	
	Formation of solar systems: debris disks, protoplanetary evolution, Kuiper						1			·								
										1								
	Belt objects, asteroids and comets, planetary atmospheres									1								
															((
M. Ulmer	The Next Generation Space UV-Vis Space Observatory (NG-SUVO)	UV-Visible	350-10000nm	2.4m	Camera	Filters	0.03"	6'	lunclear	N/A	Ambient	Ambient	N/A	N/A	N/A	\$2B FY17	Descope	improvements in
(Northwestern)										1			1	1	1.	1	of 2009	optics (coatings)
(Northwestern)										1							paper	and detectors
										1								and detectors
										<u> </u>							estimate	
	1. A study of the hot intracluster medium of rich clusters of galaxies																	
	He II absorption and the ionization history of the Universe out to z of 4.																	
	Observing metals in intergalactic filaments									1		1						
	4. Observing the warm hot intergalactic medium (WHIM) and the relationship									ĺ								
	between galactic winds and metal enrichment of the WHIM.									1								
													+			+		
	5. Detecting metals in planetary disks leading toward an understanding the									1			1			1		
	relationship between the metallicity in proto-planetary disks and planet		1	1						1			1	1				
	formation.	1		1						1			1	1	1			
																+	4	
	Detecting the water absorption and perhaps even DNA-protein-like	1								1			1					
	absorption features in the atmospheres of extra-solar planets (or extra-solar	1								1			1	1				1
	moons such as Europa or Enceladus).	1	1	1						1			1					1
										<u> </u>								
	Imaging aurorae on solar system planets, e.g. Jupiter		I		L	1	I	l	I	1			1		1	I	1	L
P. Goldsmith	SPECtroscopic TeRAhertz Satellite "SPECTRAS"	THz	300-5000 GHz	6m	Spectroscope	low-res	4-25"	256-1600"	4x better than Herschel	5x64	5-10K	4K	ES-L2	<7000 Kg	Falcon9H	\$1.4B	Team X	THz detectors
(JPL)										1		1						derived from
			1	1						1		1	1	1				Herschel
	will target the most important low-lying transitions of both HDO and other	1	+	+	1	+	1					1		+	+	+	+	
		1								1		1	1	1				
	isotopologues of water, enabling accurate measurements of the D/H and	1		1						1			1	1	1			
	oxygen isotopic ratios in a large number (on the order of 20) of comets	1	1					1		1			1	1	1			
	water will be a uniquely powerful tracer of the collapse of dense star-forming	<u> </u>	+	+		+	1	+		t	·	·		+	+	+	+	+
										1			1					
	cores									1		1	1			1		
	SPECTRAS's higher sensitivity it will possible to survey many nearby disks and		1	1									1	1		1	1	1
	determine their gas-phase water content	1								1			1	1				
	perernine over 505 phase water content	1	1	1	1	1	1	1		1	1	1	1	1	1		1	L
	Atomic fine structure lines are valuable probes of the interstellar medium and																	
		1	1	1	1	1		1	1	1		1	1	1	1	1	1	l