Recommendations to the COPAG Executive Committee by the SIG #2

A Response to the Charge made of the NASA PAGs by Astrophysics Director Paul Hertz on the Question of Next Generation Flagships

[UV-Visible Astronomy]

Background

In January 2015, Dr. Paul Hertz asked the NASA's Astrophysics Program Analysis Groups (PAGs) to collect and analyze the community's thoughts on which future Flagship missions NASA should give input on for the 2020 NRC Decadal Survey on Astronomy and Astrophysics. This request to the PAGs was motivated by the need to ensure that any Flagship concept presented to the Decadal Survey was sufficiently developed both scientifically and technologically as to be considered plausible and feasible. Four possible Flagship concepts are currently under discussion: a Far-IR Surveyor, a Habitable-Exoplanet Imaging Mission, a UV/Optical/IR Surveyor, and an X-Ray Surveyor. NASA intends to invest limited funds in key technology development that would enable the science and mission concepts envisioned. To this end, the directed charge was:

- Each PAG should reach out to their communities to review the starting set of four Flagship concepts and to suggest additions, subtractions, and providing useful commentary.
- Each PAG will consider what mission studies should be performed to advance astrophysics as a whole.
- Each PAG should not consider that any one mission concept "belongs" to them.

Reports submitted by the PAGs will be used by NASA as the basis for the following subsequent steps to develop these mission concepts:

- Identify a small set of candidate large mission concepts
- Form a community-based Science and Technology Development Team (STDT) for each of these mission concepts
- Ask the teams to articulate the key science drivers and to identify critical technology studies needed in the interim.
- Fund studies of critical technology requirements and ask the teams to review these
- Prepare a case for delivery to the 2020 Decadal Survey committee.

In November 2014, the NASA Advisory Council (NAC) Astrophysics Subcommittee approved a request from the Cosmic Origins Program Analysis Group Chair, Dr. Ken Sembach, to establish a new Science Interest Group (SIG #2) on the future of UV-visible astronomy from space. This SIG met for the first time in January 2015 at the Seattle AAS meeting, and proceeded to solicit community input in direct support of the PAG charges with the specific focus on the UV-visible passband. In June 2015, the SIG held a 2-day workshop at NASA's Goddard Space Flight Center to consider not only the issue of Flagship science, but broader compelling science in the UV-visible, the technology needed to enable that science, and the spectrum of mission sizes needed to conduct that science. As part of that workshop, the assembled community took the opportunity to address the questions levied by Dr. Hertz in a spirited discussion. This document includes a set of recommendations to the COPAG Executive Committee motivated by the discussion and agreement arrived at during the workshop.

Recommendation Specifics – an Executive Summary

The main recommendations of this SIG to the COPAG Executive Committee (EC) are summarized here. More details on the presented science and technology germane to these recommendations are given in the following sections.

- The SIG does not suggest any additions or subtractions to the list of four concept studies.
- The SIG strongly recommends the endorsement and study of both a 10m+ class UVOIR Surveyor and the smaller UV-visible HabEx mission concepts.
- The SIG recognizes the potential of the 10+ m UVOIR Surveyor to make compelling discoveries in both cosmic origins and exoplanet science.
- Based on input from the ExoPAG, the SIG assumes that HabEx concept is smaller than the UVOIR Surveyor although the exact HabEx aperture has not yet been determined. At this time, the SIG did not explicitly explore the astrophysical science applications of a smaller aperture mission. Although a smaller aperture telescope may address many of the same astrophysical themes, it cannot achieve the sensitivity or resolution that a larger 10+ m telescope will deliver. Even more than its aperture, the suitability of HabEx for cosmic origins applications depends critically on two yet-to-be defined capabilities: its field of view in the UV/visible and its sensitivity into the far ultraviolet.
- Among the critical UV-visible technologies that need continued investment to be sufficiently mature for consideration by the 2020 Decadal survey are optical coatings, large format radiation-tolerant photon-counting detectors, coronagraphs, and the accommodation of coronagraphic instruments in large-scale telescopes via technologies to address dynamics of the structure. It is particularly important to develop coatings and multiplexing detectors/instruments that maximize sensitivity into the far ultraviolet without compromising coronagraphic requirements.
- The SIG believes that a broad spectrum of precursor missions will be necessary to vet the new science, mature the required technologies and establish the credible workforce required to augment the scientific productivity and impact of large Flagships, while controlling risk and cost. These other missions include not only suborbital and explorer-class facilities, but also Probe-class spacecraft (cost <\$1B), more ambitious than Explorers but more focused than Flagships.
- The SIG also believes there are several compelling opportunities to work with international partners towards Flagship-class missions that fulfill the science goals identified in this document, and we encourage NASA to explore these possibilities. In that regard, we see a benefit to including ESA, CSA and Asia-based scientists as observers in the STDTs and request that NASA pursue this possibility.

Compelling Science that Supports a Flagship Mission Implementation

The SIG and the COPAG solicited input from the astrophysics community in the form of short white papers and workshop presentations. We received a total of **35** of these relevant to the UV-visible and to Flagship-class implementation. While this document is purposely intended to be brief for easier digestion, we have asked all those contributors to summarize in Science Traceability Matrix (STM) form the goals and requirements of their science. We include this summary matrix below. This information has been collected in an attempt to represent the breadth of science that a Flagship-class UV-visible mission could address.

This STM details the range of science, the types of capability and how that science maps into fundamental mission properties such as aperture, spectral range, throughput, image scale,

spectroscopic resolution, and other factors. On occasion our discussions included valuable relevant IR science goals and technologies. Many of the science problems presented here are motivated by the SIG's great interest in a 10m+ class telescope and require apertures of this size. We did not explore the extent to which 2030's era science goals could be partially addressed by smaller apertures. However, it is clear that wide-field imaging and high sensitivity into the Far-UV are essential requirements regardless of aperture size.

The scientific identity of each STM submission has been preserved to enable the STDT to interact with each submitter as appropriate. We could have further integrated the submissions to similar science questions and capabilities, but that would have represented additional work that NASA HQ has advised it did not want the PAGs to engage in to prepare these recommendations. We have merely presented work already completed as part of the SIG's deliberations running up to our workshop and provide it to the COPAG EC as information to be considered.

We have deliberately not tried to repeat the work of the AURA report "From Cosmic Birth to Living Earths", released July 6, 2015, which did an excellent job of summarizing many kinds of science that could be done with a Surveyor Flagship-class mission facility. However, we recognize that the AURA report was not complete due to their space limitations, and we wanted to make sure that no corner of the community was left unrepresented. That said, our summary is also not complete, but we believe it is more representative of the full range of potential UV-visible Flagship science.

This work should also be viewed in tandem with an earlier call from the COPAG about the future of UVvisible astrophysics in 2012 (Scowen et al 2014), where the focus was more centered on Hubble-class or slightly larger missions, and also in light of the findings of the Theia study (Kasdin 2009) which laid out the astrophysics goals for a 4m-class UVOIR mission.

Technologies that Need Investment

During the deliberations for the SIG workshop it became clear that technological advances for the UVvisible passband have been proceeding through a variety of development investments by both NASA's Science Mission Directorate and Space Technology Mission Directorate. However, the low maturity level of some crucial technologies does give cause for concern and the SIG makes the strong recommendation that additional immediate investment be provided if those technologies are to be advanced enough for consideration by the Decadal Survey in 2020. The SIG expresses some concern that the timescale for the STDT process is not necessarily consistent with the pressing schedule needed to ensure that the required technologies will conform with SMD guidelines for readiness.

The state of those technologies, their impact, and what additional investments could yield, are summarized in the attached table. Specific conclusions and recommendations include:

- Reflective Mirror Coatings: development of a reflective coating that can be deployed in a relevant environment (i.e., mirrors for space missions) that improve upon MgF₂ over Al. In addition, the coating must be scalable to a large aperture. The goals would be a reflectivity of > 70% from 90 120 nm, a reflectivity of > 90% from 120nm to 1.7 microns, uniformity < 1% for wavelengths > 90 nm, and polarization < 1% over the bandpass
- **UV Detectors**: visible/NIR detectors are excellent devices with improvements mostly being incremental for cosmic origins science, unless exoplanet science is required. One key feature would be better radiation tolerance than is available to state of the art silicon detectors. The lifetime of an instrument using these visible/NIR detectors is limited by the detector, not the spacecraft. For the UV, improvements to DQE greater than 70% at 90 120 nm, larger formats (> 4k × 4k resolution elements), and improvements in dynamic range would increase

the science capabilities of a flagship mission. A stable (< 1 pixel) wavelength solution and the ability to observe to a very high signal to noise (>100) is critical to select scientific programs. UV detectors also need to be photon-counting in order to take advantage of the UV minimum in the natural sky background.

- **Opto-mechnical design and validation of large optical systems**: demonstrate fabrication of thermally-stable mirrors within a production schedule that have <7 nm RMS surface-figure. Demonstrate alignment and phasing of segments with gravity release and modeling to demonstrate on-orbit capability. Develop thermally- and dynamically-stable structures for mirror and instrument support. Demonstrate vibration isolation, metrology, and actuator performance to required levels. Validate structural-thermal-optical performance (STOP) models to the picometer level, and verify testing and on-orbit stability of the optical system. Additionally development of methods to reduce the areal cost of primary monolithic mirrors.
- **Polarization-preserving telescope coatings and configurations**: develop low polarization reflective coatings that can be deployed in a relevant environment (i.e., mirrors for space missions). In addition, the coating must be scalable to a large aperture. The goal would be a polarization uniformity of 0.01% to enable space-based precision polarimetry and coronagraph contrasts as high as 1E-11 necessary for terrestrial exoplanet characterization.

After good discussions with our exoplanet science colleagues, we recognize that any Flagship-class UVvisible mission will involve a partnership between the astrophysics and exoplanet communities and that it is essential that technology studies include the accommodation of both kinds of science.

The SIG recommends to the COPAG EC that additional investment be made in the listed critical technologies to enable the next generation science listed in the included Science Traceability Matrix.

References

Kasdin, J., "THEIA: Telescope for Habitable Exoplanets and Interstellar/Intergalactic Astronomy", AIP Conf. Proc. **1158**, 359 (2009)

Scowen, P., Perez, M., Neff, S., Benford, D., "Scientific objectives for UV/visible astrophysics investigations: a summary of responses by the community (2012)", Experimental Astronomy, **37**, #1, pp.11-35 (2014)

Science Traceability Matrix

			Science Measurem	ent Requirements	Technic	cal Requirements	Instrument	Performance	Mission Requireme	ents (Science Driven)
Science Goal & Author	Investigation Theme	Investigation Science Objectives	Observables	Physical Parameter	Туре	Parameter	Baseline (ideal)	Threshold (minimum acceptable)	Parameter 1	Parameter 2
	Use high-resolution narrow-band images to observe UV emission line gas diagnostics in order to		Emission Lines (H2, CO) from cool circumstellar gas	Well measured line ratios of many lines will constrain the excitation (X-ray, thermal) and determine the temperature of the gas	Constral	Spectral range Resolution Spatial coverage	912A-2000A 1000-10000 30 arcsec long slit	1210-1700A 5000 10 arcsec long slit	Longslit spectrograph, Pixel-	Spectral capability shortward of Ly α, High spectral resolution to
To learn how the gas in	spatially resolve the structure is accretion disks and to observe the sites of planet formation. Use moderate-resolution longslit spectra to observe spectral line	Spatially receive gas disks	Emission Lines (atomic, high ionization states) from gas accreting onto young planets or gas flowing out in a photoevaporative wind	UV and optical spectra of plasma between 10^4K and 10^5K, including kinematic information	spectral	Spectral range Resolution Spatial coverage	905A-7000A 1000-10000 30 arcsec long slit	1000A-7000A 5000 10 arcsec long slit	- UV, Various gratings - and slit widths	resolve blends and detect Doppler broadening
accretion disks	conditions in the gas Spatially-	in order to understand disk					-			
is distributed and evolves (Patrick Hartigan - Rice U.)	resolved images of the gas disks will reveal gaps, image accretion streams onto the star and forming planets, show sites of gas accretion onto newly formed	evolution and the formation of planetary systems	Emission Lines (H2, CO) from cool circumstellar gas	Narrow-band high-resolution imaging of emission lines and local continuum in the UV		Pixel size	2mas Several H2 and CO lines spread across the 912 - 1700 Ang region.	5mas 16 filter minimum		
	planets, and reveal processes of				Imaging	Field of View	5 arcminute	3 arcminute	of molecular and	size wavelength range
	disk photoevaporation. Time- resolved observations will reveal orbital and pattern motion, a critical factor in understanding the physics of accretion disks.		Emission Lines (atomic, high ionization states) from gas accreting onto young planets or gas flowing out in a photoevaporative wind	Narrow-band high-resolution imaging of emission lines and local continuum in optical and UV		Pixel size Filters	2mas Lines: O VI, N V, CII, CIII, CIV, Si IV, He II, H- alpha, H-beta, [OI], [SII], [NII]	5mas 16 filter minimum	- atomic filters	and filter specs
						Field of view	5 arcminute	3 arcminute		
		1. Distinguish stellar objects from accretion disks of early black holes. Determine the redshift at which the earliest stars are observed.	1. Redshifted wavelengths of Hydrogen and Helium lines from stellar atmosphers and surrounding gaseous environment.	1. For redshift z=10 Hydrogen Lyman series will be observed between 1 to 1.4 microns. He Il will be near 1.8 microns.	IFS and/or MOS	Wavelength range	1000Å to > 2µm to cover stellar signatures from z = 0 to z =10		Field of Regard	Any place on celestial sphere over the course of one year
Understand when the first stars in the universe formed and how they influenced the environments around them (Dennis Ebbets - Ball Aerospace)		observed. 2. Determine the end of the eopch of the first stars as the redshift at which the products of stellar nucleosynthesis first annear	2. Redshifted wavelengths of C IV, N V and O VI lines in stellar atmospheres. Redshifted wavelengths of nebular emission lines of ejecta from stellar winds and supernovae.	2. Stellar atmospheric lines will be observable shortward of 1.8 microns.	spectrosco py	Spectral resolving power	$R = \lambda/D\lambda = 100$ to 200 to measure redshifts with precision of Dλ = 0.05		Pointing stability, jitter control	1/10 pixel of high resolution imager
	Confirm the identity of and begin to characterize the stellar astrophysics of the first stars	 Investigate clustering characteristics, size of star- formation regions, number of objects per region. 	 Spatial extent of star-forming regions. Number and distribution of individual objects resolvable. 	3. High resolution imaging at wavelengths near peaks of SED of Pop III objects at the observed redshift.		Wavelength range	1000Å to > 2µm to cover stellar signatures from z = 0 to z =10		Sky background	Minimize foregrounds to allow imaging of faintest diffuse objects
	(Pop III objects). I I I I I I	4. Measure Spectral Energy Distribution, luminosity and effective temperatures.	 Flux of light in many spectral bands from observers frame ultraviolet through near infrared. 	4. Spectral Energy Distribution from photometry and/or low- resolution spectroscopy.	High- resolution imaging	Spectral bandpasses	$R = \lambda/D\lambda = 5 \text{ to}$ 50 with selectable central wavelength and selectable width.		Exposure times	Exposures of 10 days or longer for spectroscopy of faint objects

		5. Detect and characterize supernova explosions of Pop III objects	5. Rise time, peak magnitude and decay rate.	5. Multi-band light curves with a cadence sufficient to sample rise-time, isolate peak brightness and characterize decay. Low resolution spectroscopy to detect signatures of products of explosive nucleosynthesis.		Spatial Resolution	20 milli-arc seconds FWHM at λ = 1.0 μ m.	Mission duration	> 5 years to allow complete temporal coverage of light curves of 10 or more Pop III supernovae
			Mesure Spectral Energy Distribution above and below 912(1+2) with SNR>5 at	Intensity	Sensitivity (Expected limits for escape fraction: 100% at low, 1% escape at high z) Backgroun d Dynamic Range	$f_{900(1+2)} = 10^{-15} \text{ erg cm}$ ² s ⁻¹ Å ⁻¹ at z = 0.02 f ₉₀₀₍₁₊₂₎ = 10 ⁻²⁰ erg cm ² s ⁻¹ Å ⁻¹ at z = 3 Interplanetary zodi and Lyman alpha limited 100000		Aperture Driver (likely requires 12 meter Gregorian 2 bounce to meet low end) Orbit Driver (L2)	
Understand how the universe came to be (mostly) ionized (Stephan McCandliss - JHU)	Determine galaxy and stellar cluster luminosity functions at energies above the hydrogen ionization edge from 0< z<3, covering 11 Gyrs of evolution	and stellar unctions at : hydrogen m 0< z<3, f evolution Evolution Detect and measure the flux above and below the 1 Rydberg in the rest frame of at least 25 galaxies and stellar clusters per redshift bin per luminosity bin to yield a confidence level of 20% per bin.	900(1+z) from stellar clusters and galaxies.	Wavelength (Energy)	(whole sample) Bandwidth Spectral Resolution Redshift resolution	900 to 3650 Å 10 Å ~ 1 Gyr bins over 11 Gyrs (0 <z<3) (11<br="">bins) 0.25 magnitude bins over 5 magnitudes of apparent magnitude (20 bins)</z<3)>	-	Handle data rate and volume (high rates for bright multiplexed targets)	
			Hot Stellar Cluster 30 to 100 pc in diameter, Evolution from 0.02 <z<3 Galaxies 1 kpc to 100 kpc in extent, Evolution from 0.02<z<3 Total angular coverage for galactic luminosity functions > 1 degree to reduce cosmic variance</z<3 </z<3 	Angular	Resolution Instantane ous FOV Pointing, multiplexin	0.075 to 0.250 arcseconds at $z=$ 0.02, 0.004 to 0.013 arcseconds at $z=3$ 2.50 to 250 arcseconds at z=0.02, 0.13 to 13 arcseconds at $z=3$ Slits ~ 1.5 x 3 arcseconds ² Multiobject spectroscopy over ~		Attitude (pointing) hold to 0.02 arcseconds per several hour observation Detector and Microshutter Array (MSA) Driver	
			25X20=500 Lyman continuum leaking objects per luminosity function. 11 Luminosity functions. Total galactic targets ~ 5500. Total cluster targets ~ 5500.	Temporal samples	B Integration time Single observatio n duration Cosmic Time and resolution	6 x 6 arcminutes ² Depends on Aperture, Detector and MSA Several (5) hours for faintest, few seconds for brightest. Multiplexing is required. 0 to 11 billion yrs, ~1Gyr resolution		With multiplexing and high efficiency optical design program could be carrried out in 5Msecond.	

Understand how the first			absorption spectrum with S/N = 100/1	Intensity	Sensitivity Dynamic Range	S/N >= 100/1 per exposure (for brightest targets) N/A	above earth's atmosphere					
stars influenced their environments, how the chemical	(1) What were the properties (e.g., masses, rotation rates, binary fractions) of the first stars, and what were their supernova explosions like? (2) Better	Characterize the detailed abundance patterns of metals (Be, B, Si, P, S, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn,- etc.) detected in absorption in long-lived, low-mass second generation stars.	Characterize the detailed Ibundance patterns of netals (Be, B, Si, P, S, Sc,	Characterize the detailed ibundance patterns of netals (Be, B, Si, P, S, Sc,	Characterize the detailed abundance patterns of metals (Be, B, Si, P, S, Sc,	Characterize the detailed abundance patterns of metals (Be, B, Si, P, S, Sc, T, V, Cr. M. S. Co, Ni, Zo	Characterize the detailed abundance patterns of netals (Be, B, Si, P, S, Sc, Ti V, Cr. Mp. Fe, Co. Ni, Zp.	hundreds of absorption lines of 10-20 species resolve the stellar line widths, or come close	Wavelength (Energy)	Bandwidth Resolution	1700 to 3100 Angstroms 60,000 sufficient (30,000 minimum; 100,000 ideal)	Echelle spectrograph should cover this wavelength range (or more) in one or (at most) two exposures
elements were dispersed through the CGM, and how galaxies formed and evolved	understand stellar nucleosynthesis by studying its products. Identify the nature and site or sites of the r-process. Characterize the physical parameters of the s-process.		N/A single-object point-source mode is sufficient	Angular	Resolution Instantane ous FOV Pointing, scanning, etc	N/A N/A N/A						
(Ian Roederer - U. Michigan)			no time domain requirements (can co-add multiple exposures taken at different epochs)	Temporal	Integration time Single observatio n duration	tens of minutes whatever maximizes time on target to overhead						

			Cover a range of wavelengths from 120 to 660 nm, from the UV into the mid-optical.	Find and determine the structure of physical manifestions of magnetic activity on and between stars. Determine the physical conditions inside those magnetic structures.	Spectral	Spectral range Number of filters	120-660nm 20	120-500nm 8	20 filters OR energy resolving detectors	
			Take time-resolved, high- quality spectral-images in UV of	Find and follow the dynamic evolution of stellar magnetic		Minimum SNR	50 (all targets all filters)		instrument	telescope aperture
			the surfaces of sun-like stars to 4pc and larger stars to further distances.	structures; determine drivers of stellar magnetic activity with goal of understanding the		Exposure times	1 -60 min	10 min	throughput requirements	and individual mirror size)
				Find and determine the structure of such features.	Spectral	filter widths	1 nm	1 nm	20 filters with well- characterized	
			Take time-resolved, high quality spectral images in UV of	Determine the physical conditions inside these		Central wavelengths	120-660nm	120-500nm	bandpasses OR energy-resolving	
Conduct			accretion, convection, shocks, pulsations, winds, and jets.	features and measure their evolution in time. Improve theoretical models. Cadence from few hours to years.		Repeat Obs. with cadence of few hours to a year or more.	1 hr to 10 yr	1 hr to 5 yr	stable instrument response	calibration program requirements
observations over the 1200-		Resolve stellar disks and the surface manifestations of magnetic activity in		Detect and measure manifestations of magnetic activity (e.g., plages, spots)		Resolution (defined at 150 nm)	sub-milliarcsec	sub-milliarcsec	Fizeau interferometer	Sparse array of ~30 spacecraft, each
to advance our understanding of the formation, structure, and evolution of stars and stellar	spectral-imaging to study the evolution of structure and transport of matter within, from, and between stars and to study stellar magnetic activity by resolving stellar surfaces.	their atmospheres and the mass flows to, from, around, and between stars to understanding magnetic activity and its impact on the formation, structure, and evolution of stars and stullar systems.	Take high-quality images in UV at multiple wavelengths of stellar surfaces and intra- system flows.	Detect and measure intrasystem mass flows.	Angular	Instantaneous FOV	4x4 milli-arcsec	4x4 milli-arcsec	beam combiner that can handle ~30 separate beams. Energy-resolving detectors preferred.	containing 1 m mirror, with array baselines adjustable from 100 to 1000 m maximum diameter. Plus beam combiner s/c at 5 km distance.
systems. (Ken Carpenter - GSFC)		stenar systems.	Optical intensity (10 nm wide filters) variations as function of location on stellar surface with cadence of 1 min.	Perform astereoseismology to measure internal stellar structure. Changes in internal structure as function of magnetic activity cycle.		Acquire and readout time (optical)	1 min	1 min	readout time < 1 min	
									4 /	

		Ultra-high angular resolution	Stellar surface and intra- system mass flows.	Precision Formation	orbital location	L2		Mission must be at Sun- Earth L2 to permit precision formation- flying of array.
				Flying	Flight duration and timing	10 year	5 year	Observe stars over significant fractions of magnetic activity cycles (5 yr min, 10 yr desired). Other intra-system mass flows require 10 year mission.

				Intensity	Sensitivity Dynamic Range	=Limiting Flux/SNR =Max Flux/ sensitivty
				Wavelength (Energy)	Bandwidth	2.0 microns+
				Wavelength (Energy)	Resolution	Broadband
					Resolution	0.1"
	circumstellar environments to	of dust, rings and	Extended circumstellar		Instantane	60"
	determine distribution of matter.	protoplanets.		Angular	Pointing,	0.01"
					etc	0.01
					Integration time	Background limited
				Temporal	Single observatio	Jitter limited
					n duration	
				Intensity	Sensitivity	=Limiting Flux/SNR
					Dynamic Range	=Max Flux/ sensitivty
					Bandwidth	550 nm
				Wavelength (Energy)	Resolution	Broadband
	Detect clouds and surface	Time resolved reflectivity	Exoplanet light curves.	-	Resolution	0.01"
	features of exoplanets.	of exoplanets.			Instantane ous FOV	10"
Conduct				Angular	Pointing, scanning,	0.001"
observations over UVOIR					Integration time	Background limited
wavelengths, that contribute to the				Temporal	Single observatio n duration	Jitter limited
understanding					Sensitivity	=Limiting Flux/SNR
or exoplanets				Intensity	Dynamic	=Max Flux/
and the					Range	sensitivty
circumstellar					Bandwidth	2.0 mcrons+
environment,				Wavelength (Energy)	Resolution	Broadband
the low mass					Resolution	1"
end of the stellar IMF, the	Constrain low and of the stellar	Deen imaging of star			Instantane	300"
hackground	Constrain low end of the stellar	Deep inaging of star	Eaint cool stars	Angular	Jus POV	

1:1e9 contrast ratio	
w/ CID	
Roll control +/- 15	
degrees within a	
visit.	
LEO, GEO or L2 for	
stable PSF	
All sky survey	
1/10 Pointing better than pixel size.	
Operate for 5+ years.	
Maintain fine	
guidance lock	
between orientations	
with muliple GS	
acquisitions.	
·	

fields of bright stars, and the nature of QSO	IMF.	clusters and the field.		Angula	Pointing, scanning, etc	0.1"		
host galaxies. (Dan Batchelador - FIT)				Temporal	time Single observatio n duration	Background limited		5-8m monolithic
				Intensity	Sensitivity Dynamic Range	=Limiting Flux/SNR =Max Flux/ sensitivty		Cassegrain in oversiz faring.
				Wavelength (Energy)	Bandwidth Resolution Resolution	500 nm - NIR Broadband 0 1"		
	Deep survey of QSO hosts to	Deep imaging of quasars.	Circumnuclear and extended	Angular	Instantane ous FOV	60"		
ſ	determine distribution of matter.		field around quasars.		Pointing, scanning, etc	0.01"		
				Temporal	Integration time Single	Background limited		
					observatio n duration	Jitter limited		
				Intensity	Dynamic Range	=Max Flux/ sensitivty		
				Wavelength (Energy)	Bandwidth Resolution	UVOIR Broadband		
l a	Unknown discovery space	Deep imaging of bright	Bright stars	Angular	Instantane ous FOV	300"		
	around bright stars.	star fields.			Pointing, scanning, etc	0.1"		
				e In ti	Integration time	Background limited	-	
				remporal	observatio n duration	Jitter limited		

Tracing the			Multi-Object-Spectroscopy	Measure stellar and gas aboundances from absorption/emission features		Spectral range	350-1600nm	350-900nm	Obtain 50-100 spectra per galaxies	
galaxy evolution and rejuvenation			(R>=3000) large FOV (>=4')	Measure kinematics of substructures stars vs. gas from absorption/emission features	Spectral	Number of slits	100	50	in Near UV, Optical, NIR	
nearby (< 40 Mpc) early ty-pe		Reveal and map sub-	Far UV-Optical Integral Field Spectroscopy (possibility of	Measure stellar and gas aboundances from absorption/emission features	Spectral	Spectral range	90-900nm		Obtain 50-100 spectra per galaxy in	
in low density	Dorivo mechanisms of evolution	tellar and gas streams,	R<=100000) large FOV (>=4')	Measure kinematics of Far UV bright sub-structures		Number of slices	100	50	Far UV-Optical	
(LDEs).	investigating ETGs, from giant to	external UV disks.	LIV optical Imaging	Detect sub-structures. Build HR diagramsfor nearby ETGs.		Minimum SNR	300 (all targets all filters)	100 (all targets all filters)	an ample set of filters	talaccono aporturo
observations	of different galaxy richness.	the IGM. Determine the		Measure physical properties and distribution of the gas e.g.	Dhotomotr	Wavelengths range UV-Optical	90-900nm		with well-	telescope aperture
with space (e.g.	Separate secular vs. external	structure, derive		Detect sub-structures. Build	Photometr	Exposure times	1–200 sec	1-200 sec	standard bandpasses	stable instrument
ground based	evolutionary mechanisms.	aboundances tracing	imaging NIR+MIR.	HR diagrams for nearby ETGs. Measure physical properties	У	Narrow band filter widths	<=10 nm	<=10 nm	including narrow	response
millimiter new		metallicity enrichment.		and distribution of the gas (atomic, molecular) e.g. with		Wavelengths range NIR+MIR	1000-10000nm	1000-5000nm	banu illers.	calibration program required
observatories			Cover a FOV as large as possible	Spatial resolution and FOV for		Resolution (defined at 400 nm)	0.05"	0.1"	plate scale of 0.02" to 0.05" per pixel (for 2k	

are required. (Roberto Rampazzo -	(>6') to map sub-structures at high resolution.	imager.	Angular	Pointing, scanning, etc Instantaneous FOV	0.1" error over FOV >=6'	0.1" error over FOV 4'	x 2k array); stable focal plane and telescope assembly
INAF, Padova)			Tomporal	Total Integration Time	>10 hours		
			remporai	Single Observation duration	1-200 sec	1-200 sec	

			Emission Lines from radiative shock waves	Spatially-resolved emission line ratios from the optical through the UV		Spectral range Resolution Spatial coverage	912A-9000A 1000-30000 5 arcminute slit	1216-7000A 1000-20000 3 arcminute slit	Longslit	Spectral capability
			Stellar accretion shock	UV spectra of plasma between		Spectral range	912A-3000A	1000A-3000A	spectrograph, Pixel-	spectral resolution to
			diagnostics	10^4K and 10^6K	Spectral	Resolution	1000-30000	1000-20000	size chosen as λ/D for	resolve blends and
						Spectral range	N/A	N/A	ov, various gratings	detect Doppler broadening
	Use high-resolution narrow-band		Emission Lines from	Spatially-resolved UV spectra		Resolution	1000-10000	1000-3000A		
To learn how	images to observe jets as they become collimated. Use spectral	Derive physical conditions in jet collimation regions and observe time- evolution in order to understand MHD disk wind collimation and acceleration	reconnection point	of plasma between 10^4K and 10^6K		Spatial coverage	30 arcsec slit	20 arcsecond slit		
in young stars	line ratios to define temperature,									
in young stars collimate and accelerate supersonic jets (Patrick Hartigan - Rice U.)	ionization fraction and density. Spatially-resolved higher-spectral resolution observations define dynamics within flows as they are launched. Time-resolved observations follow knots as they are ejected. UV spectra connect the flows to accretion events.		d Emission Lines from radiative shock waves oj			Pixel size	3mas	5mas		
				Narrow-band high-resolution imaging of emission lines in optical and UV	Imaging	Filters	SII 6716, SII 6731, NII 6583, Ha, OI 6300, NI 5200, OII 3727, OIII 5007, MgII 2800, CIII 1909, HeII 1640, CIV 1550, OVI 1036, etc.	16 filter minimum	Imager with full suite of nebular filters	Optical and UV pixel size, wavelength range and filter specs
						Field of View	5 arcminute	3 arcminute		
				Narrow-band high-resolution		Pixel size	3mas	5mas		
			Emission Lines from	imaging of emission lines in		Filters	Similar to	16 filter		
			reconnection point	optical and UV		Field of view	avode	minimum 10"	-	
						rield of view	20	10		
				Cover a wide range of atomic						

Obtain high- resolution		Obtain a deep statistical understanding of the	Ultraviolet spectroscopy, Photospheric abundances	transitions, including C, N, O, Si, Mg, Ca, Al, Ti, S, P, Ti		Spectral range	92-360nm	100-320nm	Detectors, optical elements, coatings	
ultraviolet		abundances of exo-		Resolve line blends, separate		Spectral resolution	40000	20000	Optical elements,	
spectroscopy of		planetary systems, that is		photospheric and ISM lines		spectrarresolution	40000	20000	detector size	
~200 white	Derive the bulk abundances of	comparable to what we								
dwarfs that are	the planetary debris in these	achieved (primarily via			Spectral					
polluted by the	systems using model atmosphere	meteorite studies) in the			opeenai					
debris of	and diffusion analyses.	solar system. These data		Increase sample volume			S/N~50 at 1e-	S/N~50 at 5e-15	Coatings, no. of	
planetary		will guide our		accessible to detailed		Sensitivity	15 continuum	continuum flux	reflections, detector	Aperture size
debris. (Boris		understanding of, and the		abundance studies			flux in 1h	in 1h	efficiency	
Gaensicke - U.		theoretical models of								
Warwick)		planet formation								

			H I Ly-alpha + Lyman break. O VI, C III, C IV.	Intensity	SNR	25	10	Large aperture required to allow spectroscopy of faint background galaxies.
	*Lico multi object spectroscopy		H I Ly-alpha + Lyman break. O VI, C III, C IV.		Range	900-3200 Å	1000-2000 Å	Resolution+SNR push
Survey the extent and	(MOS) to map H I in CGM using multi-object spectroscopy of background galaxies/QSOs, examining external source of CGM flowr (i.e. the connection	*Column densities and	Resolve Ly-series absorption from interloping IGM. Detect galactic outflows in O VI absorption toward OB assocations.	Wavelength	Resolution	5,000	2,000	Need good resolution for probing outflows / doing physics on CGM absorption.
CGM about galaxies. (Chris	to the IGM). *Use MOS to map individual launch points of	R_vir. *Kinematics of outflows being fed by			Resolution			Sufficient to separate individual OB associations.

Dame)	galaxies. Target OB associations across face of galaxies. *Map CGM in emission with long "stares" in an MOS mode.	illuiviuuai UB associations.		Angular Temporal	Instantane ous FOV Pointing, scanning, etc Integration time Single observatio n duration	6' – 10' <50 ksec 5 ksec	2']	oV matched to virial liameter of massive alaxies at z~0.1 in he ideal case. Larger ield provides more exposure times short enough to allow urveys of 10s of galaxies.
Conduct a survey of the	*Map the circumgalactic medium absorption about individual galaxies toward several		Detect weak EUV transitions tracing the hottest gas, low metal column density tracing IGM inflow.	Intensity	SNR	50	25	F F F r	ligh SNR needed for veak metal lines. ¹ ushes to large uperture, good reflectivity.
survey of the baryonic and metal content in the circumgalactic medium (CGM) of galaxies as a function of gas "phase." Trace the exchange of matter between galaxies and the intergalactic medium. (Chris Howk - U. Notre Dame)	background sources at high resolution and signal-to-noise. *Measure velocities of circumgalactic gas with respect to galaxy host. *Assess metallicity from inner circumgalactic medium through the virial radius and into the intergalactic medium. *Use multiple ions to probe the distribution of baryons, metals with temperature. Probe the hottest 10^6 K gas at nearly the	High resolution spectroscopy of UV wavelengths giving access to redshifted EUV/UV absorption/emission diagnostics	Observe H I features incl. 1 Ryd break throughout Universe; access critical EUV transitions. Resolve internal motions in CGM/diff. between phases.	Wavelength	Range Resolution	900-3200 Å 45,000-60,000	1000-3200 20,000	F 	esolution+SNR push arge apertures. leed for multiple background objects potably (OSO) also
				Angular	Resolution Instantane ous FOV Pointing, scanning, etc.			ے f <u>s</u> ب د د د د د د د د د د د د د د د د د د	esolution sufficient o provide necessary pectral resolution. (ey for CGM science s stable, well- characterized spectral LSF, preferrably very
	virial temperature with FUV/EUV transitions (O VI, Ne VIII, Mg X, Si XII) ; probe the cooler gas with H I, Si II, Si III, Si IV, C II, C III, C IV.			Temporal	Integration time Single observatio n duration	<50 ksec		E E C i	xposure times short nough to do many 2SOs behind ndividual galaxies

			Cover a range of wavelengths in UV and visible	Measure stellar temperature, luminosity, mass, mass loss rate, terminal velocity, rotation speed Measure chemical composition of atmospheres and ejecta	Spectral	Spectral range Spectral resolution	90-1000nm -	120-1000nm 20,000	??+ filter imaging in UV/vis range	
Conduct		Derive statistics on the	Take high-quality images of	Study spatial location of		Minimum SNR	-	25	instrument	telescone anerture
ultraviolet to		physical properties of	individual massive stars in	massive stars and their		Exposure times	-	-	throughput	
optical observations.		massive stars, their evolved descendants, and		Measure extinction due to dust towards many sightlines	Photometr	Central wavelengths	90-1000nm	120-1000nm	??+ filters with well-	
that contribute to the understanding of the evolution	Collection of statistically significant samples over the entire HRD and in environments that are extreme in terms of SFR, metallicity, reddening.	ly control desections, and cover a supernovae (temperature, luminosity, mass loss rate, rotation speed, binary masses and periods, chemical composition of atmospheres and ejecta, spatial location as a function of type, variability) Sam bi	Cover a range of wavelengths in UV and visible		У	Accuracy and systematic error	-	-	bandpasses	
						Resolution (defined at 150 nm)	0.05"	0.1"	stable instrument response	calibration program requirements
and fates of				-		Stable distortion solution	0.1" error over FOV	0.1" error over FOV	plate scale of 0.02" to	
massive stars. (Aida Wofford - Institut d'Astrophysique de Paris)					Angular	Instantaneous FOV	60"	> 50"	0.05" per pixel (for 2k x 2k array); stable focal plane and telescope assembly	-
			Sample at cadence tied to binary orbital motions	Obtain masses and periods of binaries	Target temporal sampling and sky location					
		Sample at multiple e study history of ma		Sample at multiple epochs to study history of mass loss		Study eruptions of LBVs and other massive star descendants Study conditons prior to supernova explosions	Acquire and readout time	?? min	?? min	readout time < ?? min

			Isolate massive stars within star clusters out to 10 Mpc and individual star clusters out to 100 Mpc by getting their UV-to-nearIR spertra plus	Intensity Wavelength (Energy)	Sensitivity Dynamic Range Bandwidth Resolution	2 M_sun star at 10 Mpc in 0.1 micron band 2-300 M_sun stars at 10 Mpc 0.09-1.2 micron 3000-5000
		Determine the Upper End (slope, maximum star	with spatial resolution of 0.05 pc (per pixel) at 5 Mpc and 1 pc at 100 Mpc		Resolution	0.004" (2 pixels)
Conduct observations from the UV to the radio to understand star formation within galaxies and how it drives galaxy	Observe nearby galaxies within 100 Mpc to obtain statistics within a representative volume of the Universe of star formation	mass) of the Stellar Initial Mass Function	and spatial coverage of 3 arcmin x 3 arcmin (rough galaxy size)	Angular	Instantane ous FOV Pointing, scanning,	3'x3'
			Simultaneous coverage of multiple stars and star clusters (multi-object spectroscopy)	Angular	Aperture size (spectrosc opy) number of apertures	0.006" >10000 each
		Reconcile the Local and Cosmic Star Formation	Recent-past star formation histories (past 1 Gyr with 10 Myr time resolution) of local	Intensity	Sensitivity Dynamic Range	m_UV~31 mag 8-10 mag
growth througout space	~1 Myr to 13 Gyr.		by getting their UV-to-nearIR broad/medium/narrow band	Wavelength (Energy)	Bandwidth Resolution	0.15-1.5 micron 10-300
and time. (Daniela Calzetti			with spatial resolution of 0.05 pc (per pixel) at 5 Mpc		Resolution	0.004" (2 pixels)
- U. Massachusetts)			and spatial coverage of 3 arcmin x 3 arcmin (rough galaxy	Angular	Instantane ous FOV Pointing,	3'x3'
			size)		scanning, etc	
			Color-magnitude diagrams of stars down to 0.5-1 mag below the Main Sequence turn off at	Intensity	Sensitivity Dynamic Range	m_V=35 mag 8-10 mag
		Determine the growth of galaxies by studying the	UV-to-nearIR medium/broad band photometry	Wavelength (Energy)	Bandwidth Resolution	0.15-1.5 micron 10 50
		stellar population content, star formation modes, and	with spatial resolution of 0.1 pc (per pixel) at 10 Mpc		Resolution	0.004" (2 pixels)
		star formation histories of their outskirts	and spatial coverage of 3	Angular	Instantane ous FOV	3'x3'
		their outskirts	arcmin x 3 arcmin (rough galaxy size)		Pointing, scanning, etc	

			1) Flux calibrated and spectrally resolved ultraviolet/optical spectra of > 30 protostellar	Intensity	Sensitivity	S/N = 10 @ 1E -16 [erg /cm2/s] per 60s
			systems in each of 10 star-		Dynamic	1E-11 - 1E-19
			forming regions with a variety		Range	[erg/cm2/s/A]
			2) Spectrally resolved			
			abosrption lines in high-		Bandwidth	2a) 91 - 170 nm, 2b)
			inclination disks: H2, CO, H2O,		Banuwiutii	100 - 400 nm
Understand			atomic species			
how protoplanetary disks evolve and form planetary systems (Kevin France - U.Colorado)	Determine the accretion luminosity of protostars, the composition of the inner 10 AU of planet-forming disks, and the lifetime of gas disks in young planetary systems	Mass accretion rates of protostars; abundances, physical conditions, and lifetimes of molecular gas in the inner regions of protoplanetary disks	2b) H2 and CO fluorescent emission in disks of any orientation	Wavelength (Energy)	Resolution	2a) 3 km/s for lines absorption lines, 2b) 100 km/s for emission lines
					Resolution	2"

In space, high QE detectors

high count rate detectors optical coatings down to 91 nm. highresolutuion, lowscatter gratings. one high-resolution spectrograph and one multi-object spectrograph. flux standards for 2% absolute spectrophotometry N/a

	Angular	Instantane ous FOV	~20' for MOS
3) Observe temporal variability		resolution	10 seconds
of mass accretion		Single	
reverberation manning of	Temporal	object	5 hrs
		observatio	51115
Indiecular emission mes		n duration	

				1) Broadband spectrally resolved ultraviolet irradiance	Intensity	Sensitivity	S/N = 10 @ 1E -16 [erg /cm2/s] per 60s
				spectra or all habitable planet		Dynamic	1E-11 - 1E-19 [erg
				candidates, N = TBD		Range	/cm2 /s /A]
		Determine the absolute lovel the		2) Absolute fluxes of spectrally			
	Charactorizo	constral operate distrubution and		and temporally resolved upper		Bandwidth	95 - 400 nm
	Characterize s nearby t habitable e	spectral energy distrubution, and the temporal variability of the energetic radiation environment around exoplanets to determine	Chromospheric, transition region, and coronal luminosity and activity level of low-mass stars (G,	atmosphere emission lines:	Mayolongth (Enorgy)		
				C III, O VI, LyA, O I, C II, Si	e		15 km/s for lines,
				IV, C IV, He II, Fe		Resolution	100 km/s
	(Kovin Eranco			II, Mg II, Ca II			broadband
	(Reviil Fiance -	habitable exercises and control	K, and M)	3) ang resolved stellar LyA from		Resolution	0.2 arcsec at LyA
	0. Colorado)	for biosigneture false positives		background (geo,	Angular	Instantane	> 2 arcsec (no hard
		for biosignature raise positives		interplanetary)		ous FOV	requirement)
						resolution	1 sec
				4) Temporal variability of high-		Single	
				energy emission lines on typical	Temporal	object	0 hrs
			t	timescales of UV flares		observatio	01115
						n duration	

			1) Spectrally resolved far-UV transit observations of > 30 Jupiter-mass planets, > 20	Intensity	Sensitivity	S/N = 50 @ 1E -15 [erg /cm2/s] per 60s
			Neptune-mass planets, and >		Dynamic	1E-11 - 1E-18 [erg
			10 rocky planets. >= 3 transits		Range	/cm2 /s /A]
Understand the processes that determine the	Determine the heating rates,	Atmospheric mass-loss rates from short-period	 Transit depth as a function of wavelength and orbital phase for key atmospheric tracers: 	Wavelength (Energy)	Bandwidth	100 - 300 nm
evolution of planetary	and thermodynamic structures of the atmospheres of extrasolar	planets of multiple atmospheric constituents. The incident stellar high	LyA, O I, C II, Mg II, H2 (superposed on O VI, C II, N II, and C III profiles)		Resolution	3 km/s
	planets	energy radiation spectrum.	3) ang resolved stellar LyA from		Resolution	0.2 arcsec at LyA
(Reviil Fidlice -			background (geo,	Angular	Instantane	> 2 arcsec (no hard
U. Colorado)			interplanetary)		ous FOV	requirement)
					resolution	1 min
			(1) Observe pro ingress transt		Single	
			and post ogross stellar flux	Temporal	object	9 hrs
		а	and post-egress stellar flux		observatio	8 nrs
					n duration	

			Orientation of primary system axis (e.g., binary orbital plane, elongation of SN ejecta)	Broadband linear polarimetry (Stokes I, Q, U)	Sensitivity Dynamic Range	S/N in total light = 100 in 30 min P = 0-10% with s _P /P < 0.1
Understand the nature of stellar winds, magnetic fields, and circumstellar material in	Use UVV time-domain broadband polarimetric and spectropolarimetric observations	Shapes, sizes, extents, temperatures, densities,	Gas distribution, clumpiness, composition, temperature, density, ionization state; magnetic field strength and geometry via Hanle effect	Linear spectropolarimetry (Stokes I, Q, U)	Bandwidth Resolution	100-900 nm for key diagnostic lines (Lya, Ha, UV wind lines) R = 25,000 (UV) to 35,000 (visible)
massive evolved stars and their influences on single and	to characterize changes with time (and orbital phase, for binaries) of CIRs, magnetic field lines, disks, and other stellar wind and	and compositions of electron- and resonance- line scattering regions in the atmospheres, winds,	Magnetic field strength and	Circular spectropolarimetry	Bandwidth	100-900 nm for key diagnostic lines (Lya, Ha, UV wind lines)

FUV-MOS, e.g., microshutter device

photon-counting detectors, L2 or elliptical orbit

In space, high QE detectors

high count rate detectors

optical coatings down to 91 nm. gratings. Flux standards for 2% absolute spectrophotometry

N/a N/a

photon-counting detectors, L2 or elliptical orbit

In space, high QE detectors

high count rate detectors

optical coatings down to 100 nm. highresolutuion, lowscatter gratings

N/a N/a

photon-counting detectors, L2 or elliptical orbit

Instrumental polarization < 3%. Polarized and unpolarized standard

Instrumental polarization < 3%. Polarized and unpolarized standard stars.

Good pointing stability (~0.1 km/s between spectra in a sequence) for precise

binary stellar evolution and SN/GRB progenitor	CSM structures; as well as illuminating the characteristics of SN ejecta and surroundings that trace the progenitor's mass-loss	and CSM of massive single and binary stars and supernovae. 3-D magnetic field geometries in single and binary evolved stars.	geometry via Zeeman effect	(Stokes V)	Resolution	R = 25,000 (UV) to 35,000 (visible)			line combination. Simultaneous wavelength calibration.	
pathways. (Jennifer Hoffman - U. Denver)	history.	,		Angular	Resolution Instantane ous FOV					1
			Periodicities including rotation, orbital motion, and CIR modulations; time evolution of SN ejecta and CSM	Temporal	Single object observatio n duration	few days for entire rotation period			Monitoring capability to characterize orbital periods up to timescales of months	
		Derive statistics of the disk		Gas temperature in the		Sportral range	12004 00004	27004 70004		
		dispersal time scale as a function of the stellar and		photoevaporating wind Gas velocity structure in the		spectral range	1200A - 9000A	2700A - 7000A	Spectrograph with long slit capability. An	Possible synergy with needs of extragalactic
		environmental properties,		photoevaporating wind	Spectral	Spectral resolution	R up to 30,000	R up to 10,000	IFU system would be	community to spectro-
Investigate the dispersal	Use narrow-band imaging and	different spectral types and ages, and in stellar		Gas density in the photoevaporating wind		Spatial resolution	20 arcsecond slits @ λ/D pixel scale	5 arcsecond slits @ λ/D pixel scale	resolution is lost	image multiple sources in a field
proto-planetary	map the morphology and	clusters with different star formation histories.	A range of emission lines in			Spatial Resolution (defined at 400 nm)	λ/D pixel scale	λ/D pixel scale		
disks through observations of gas forbidden lines (Patrick s Hartigan - Rice U.)	winds and invesigate the time	Compare the dispersal of	including [O I] 6300A, Hα, and Mg II 2800A	1		FOV	5 arcminutes	3 arcminutes		12 m primary to give
	winds and invesigate the time scale for the disk dispersal in systems that are in the process of forming planets	of regions such as Taurus and Chamaleon, with that in intermediate mass star forming regions such as Orion, and in high mass star forming regions such as Carina.		Morphology of the gas emission as a function of the distance from the star	Imaging	Filters	16 narrowband nebular filters, among them Cl 9850, NII 6583, NI 5200, Ol 6300, Ol 3727, SII 6716, SII 6731, Mg II 2800, Hα	12 filters minimum	IFU system would be great if no spatial resolution is lost Imager with excellent filter options and a modest FOV	spatial resolution, flux sensitivity, and Strehl ratio needed to image faint extended structures reliably around bright point sources
		Count and measure the physical parameters to	Individual stars in young clusters down to 5 solar masses	Angular Resolution			0.008"			
What controls	Observationally constrain models	10% accuracy of individual		Field of View			15 arcmin			
energy- chemical cycles	the massive stars that drive metal production and distribution	to 5 Mpc (e.g.,	Brightnesses of such individual stars in at least 6 independent bands covering 0.2-1.0 micron.	Number of Filters			6			
within galaxies? (Ben Williams - U. Washington)	through libraries of resolved massive stars in a wide range of formation environments.	NGC253,M82), covering metallicities from 0.1-2.0 solar and galaxy masses ranging from 10^5-10^12 solar masses		Wavelength Coverage			0.2-1.0 microns			
			Medium to high-spectral resolution spectropolarimetry	Size distribution alignment fraction and mineralogy of the small dust	Spectral	Spectral range	160-1600nm	300-500nm	Instrumental polarization, stability and variations over	Sensitivity to assemble statistically significant samples of polarimetry
Measure		1) Measure the magnetic	in the UV	Particle heights, cloud/haze		Resolving power	1000	100	the FOV	of background stars

									and variations over	complex of polarimetry
Measure			in the UV	Particle heights, cloud/haze		Resolving power	1000	100	the FOV	of background stars
magnetic field	Lico spostropolarimotry over	1) Measure the magnetic		thickness, gas abundances						
	Ose specifopolarinietry - over	field strength in diffuse gas	Spectropolarimetry of the	Statistics of polarization of						
and dust	the UV (and optical) range - to	and 2) characterize the	2175Å extinction feature	feature		Spectral range	210-130nm		Sensitivity.	
characteristics	determine the amount and	dust properties by		Establish carrier and improve	Spectral				instrumental	
in the	orientation of the dichroic	dust properties by			Spectral				instrumental	
interstellar	extinction polarization of	analyzingth the		it's use in extinction curves		Resolving power	1000	200	polarization	
n a dium (DC	be always of stars due to allowed	polarization spectra in the		etc.						
medium (BG	background stars due to aligned	context of modern grain	Tracing of the polarization	Test ans utilize the theoretical		Sensitivity and	0.404/		a 111 11	
Andersson -	dust.	alignment theory	curve to ELIV wavelengths	prediction that paramagnetic	Photometr	systematic error	0.10%		Sensitivity,	
NASA Ames)		angiment theory	curve to rov wavelengths	alignment descinates for the	i notoineti	Systematic error	4.6 120		instrumental	
				alignment dominates for the	У	number of fileters	4 for 120-	2 for 120-250nm	polarization	
				very smallest grains, in which		individer of filecters	250nm	2 101 120 2001	polarization	
			Line polarimetry of fine	Measure magnetic field	Sportral	Spectral range	120-1600nm		instrument	toloscono aporturo
			structure lines	strengths through the Hanle	Spectral	Spectral resolution	50,000	5,000	throughput	telescope aperture

Critical Technology Status Summary

Technology	Necessary Capability	Current State of the Art (inc. TRL)	Goals and Objectives to Fill Capability Gap	Scientific	Benefits Engineering	Programmatic	Applications and Potential Missions within COR	Time to Anticipated Need
Reflective Mirror Coatings	For a UVOIR flagship telescope, there is excellent science return from 90 nm (the hydrogen cut-off) to 1.7 microns (or slightly longer for a cool, but not cryogenic mirror). Therefore a single reflective coating that has excellent reflectivity and wavefront over this entire bandpass would directly increase the science return of the mission. Exo- planet observations drive the requirements for reflectance uniformity and control of polarization effects that would compromise the performance of a coronagraph.	The current best broadband reflective coating that is practical is MgF2 over aluminum. Its short comings are reduced reflectivity below 120 nm, modest uniformity (~3%), and the 700 nm AI reflectivity djp. There is a suspected but unknown polarization effect that has not yet been characterized. Its durability and longevity in a space environment are excellent as demonstrated by the Hubble Space Telescope, since its coatings have a TRL 9. Other UV-optimized coatings exist and have been flown but are comprised by either low reflectivity in the optical (SiC) or environmental constraints (LiF over Al).	Develop a reflective coating that can be deployed in a relevant environment (i.e., mirrors for space missions) that improve upon MgF2 over AI. In addition, the coating must be scalable to a large aperture. The goals would be a reflectivity of > 70% from 90 – 120 nm, a reflectivity of > 90% from 120nm to 1.7 microns, uniformity < 1% for wavelengths > 90 nm, and polarization < 1% over the bandpass.	Offering efficient observations below 120 nm allows access to the largest number of ground state transitions of astrophysically relevant ions, atoms, and molecules. With these transitions, observations will probe temperature, density, and spatial regimes, providing unique insights in the origins of galaxies, stars, and planets.	Any mission that observes in the deep UV will benefit beyond a simple increase in observing efficiency, since better coatings will lead to the design and use of more complex and capable instrument designs providing vastly greater science return.	Improved uniformity and control of polarization effects enable better and more sensitive coronagraph measurements of exo-planets.	Any mission that operates in the deep ultraviolet would have significant gains in capability and efficiency with improved bandpass. Coronagraphic missions may be fundamentally enabled with these improvements.	For missions that would benefit from an alternative to MgF2 over AI, the results are immediate. Cosmics Origins missions currently submitted to the Explorer program would be improved with better coatings. Additionally, future missions from sounding rockets to the next UVOIR flagship are either enabled (in the case of smaller missions) or have their capabilities increased.
UV Detectors	The next UVOIR flagship mission should take full advantage of the large aperture. The instruments that maximize a given aperture will use high DQE, low noise, and large format detectors. Detectors drive the instrument design at such a fundamental level that we separate the wavelengths based on the detectors used, with each having different design goals and execution. While some applications can take full advantage of greater wavelength coverage (such as an imaging instrument with filters), other applications capitalize on features such as solar blindness in UV instruments, reducing the need for stray light control.	Current visible detectors have superb DQE from 400 to 1000 nm > 80%. Read noise of astrophysical detectors is "3 electrons, with nearly zero dark current. State of the art visible light detectors are not photon counting and have issues with radiation hardness. NIR detectors (1.0 to 1.7 microns) have good QE of >80%, but are limited with dark current and read noise. UV detectors (90 – 300 nm) have DQE from 30% at 90 nm down to 10% at 300nm. Typically they are photon counting, but have dynamic range limitations (< 5 MHz count rate). Silicon detectors that are optimized in the UV exist (~70% QE) but over a limited bandpass (~20 nm) which reduces the utility for a general purpose instrument.	While there is not likely a single, one size fits all solution, visible/NIR detectors are excellent devices with improvements mostly being incremental for cosmic origins science, unless exoplanet science is required. One key feature would be better radiation tolerance than is available to state of the art silicon detectors. The lifetime of an instrument using these visible/NIR detectors is limited by the detector, not the spacecraft. For the UV, improvements to DQE – greater than 70% at 90 – 120 nm, larger formats (> 4k x 4k resolution elements), and improvements in dynamic range would increase the science capabilities of a flagship mission. A stable (< 1 pixel) wavelength solution and the ability to observe to a very high signal to noise (>100) is critical to select scientific programs. UV detectors also need to be photon-counting in order to take advantage of the UV minimum in the natural sky background.	The fundamental increase in targets over the lifetime of a given mission increases the scientific yield of the mission. Additional sensitivity or multiplexing can provide a more than linear increase in scientific yield.	Longer lifetimes and decreased system requirements for detectors (power, temperature, high voltage, etc.) all reduce technical risk.	Detectors are a significant programmatic risk, both for schedule and for cost. Improvements in TRL have direct and meaningful impacts to missions.	Improved VIS/NIR detectors allowing photon counting and/or lower read noise are critical for exo-planet missions. Science investigations that have been proposed to COR will have increased capability (diffuse extra- galactic light experiments for example) but none are yet funded at this time. Larger formats, increased quantum efficiency, and dynamic range increase capability of any mission that require sensitivity to these wavelengths.	Improvements to detectors will enhance every mission they are used in, from improved sensitivity to longer useful mission life.
Opto-mechnical design and validation of large optical systems	A >10-meter class UVOIR mission that executes exoplanet science via internal coronagraph requires exquisite optical stability. Thermally and dynamically stable optical systems (including mirrors, structures, disturbance isolation, metrology and actuators) are needed. It is impractical for a >10-meter class UVOIR telescope and its instruments to be optically tested end-to-end before launch. Processes, procedures, and technology for on-orbit alignment, test and calibration of large space telescopes, their components and their instruments is needed.	Large segmented telescopes that are diffraction limited exist for the NIR (JWST) and with adaptive optics in the infrared (Keck, etc.). A space telescope of this size being diffraction limited in the visible and capable of picometer-level stability is a new development that represents a significant challenge, both in manufacturing, integration and test, and on- orbit operations.	Demonstrate fabrication of thermally-stable mirrors within a production schedule that have <7 nm RMS surface-figure. Demonstrate alignment and phasing of segments with gravity release and modeling to demonstrate on-orbit capability. Develop thermally- and dynamically-stable structures for mirror and instrument support. Demonstrate vibration isolation, metrology, and actuator performance to required levels. Validate structural-thermal-optical performance (STOP) models to the picometer level, and verify testing and on-orbit stability of the optical system. Additionally development of methods to reduce the areal cost of primary monolithic mirrors.	A diffraction limited telescope provides improved sensitivity to faint point sources and allows the direct study of galaxies, near and far, and enables detection and characterization of habitable exoplanets.	Reduction in risk on this matter will allow the increase of margin in other areas, including coronagraph performance for exoplanet science. Overall risk reduction within the primary optical system for all instruments.	The primary optical telescope assembly is critical to the function of the observatory and is a significant programmatic risk, both for schedule and for cost. Improvements in TRL have direct and meaningful impacts on a large UVOIR mission.	Large-aperture systems requiring exquisite wavefront stability will have a direct benefit from this work. Stable structures can have benefits to smaller missions requiring ultra-stability. Indirectly, improvements in model validation and the ability to predict on- orbit performance may improve smaller missions.	The need will be realized with the start of the development of the next large UVOIR mission (assuming a segmented primary mirror). It is important not to lose the knowledge and technical base prior to the start of the mission.

Polarization preserving telescope coatings and configurations	Today, telescope induced polarization limits photopolarimetry accuracy to greater than about 0.1% and limits contrast in coronagraphs to 1E-10 contrast. Current ground based telescopes are limited to 0.1% accuracy and calibration methods and devices to measure and control polarization in ground-based telescopes are under development. Missing is our ability to exploit the space environment for precision photopolarimetry and high fidelity image formation. A spectropolarimetric accuracy of .001% will open a new window into the universe of star formation studies, planetary nebulae, and cosmology (CMB measurements).	The current best broadband polarization measurements are limited to 0.1% . And coronagraph contrast is limited to about 10E-7 (ground) and 1E-9 (space - WFIRST-CGI).	Develop low polarization reflective coatings that can be deployed in a relevant environment (i.e., mirrors for space missions). In addition, the coating must be scalable to a large aperture. The goal would be a polarization uniformity of 0.01% to enable space-based precision polarimetry and coronagraph contrasts as high as 1E-11 necessary for terrestrial exoplanet characterization.	For a UVOIR flagship telescope, there is excellent science return from polarimetric measurements across the wavelength band from 100 to 750 nm. Potential areas of investigation include interstellar gas and dust, formation of protoplanetary systems from gas and dust surrounding stars, and high-energy magnetic fields from supernova reminants.	Minimizing internal polarization requires fewer fold mirrors and powered optical elements. This minimization would require engineers to use fewer surfaces with more complex optical figures and to simplify the structural integrity of the optical path for precision WF/SC.	Improved uniformity and control of polarization effects enables more sensitive coronagraph measurements of exo-planets and a better understanding of the energy processes in the galaxy and more accurate measurements of the Cosmic Background.	Any mission that operates in the deep ultraviolet would have significant gains in capability and efficiency with improved bandpass. Coronagraphic missions may be fundamentally enabled with these improvements.	COR missions currently submitted to the Explorer program would be improved with polarization control. The WFIRST-CGI mission, for example, would have improved SNR if the polarization were better controlled.
--	---	--	---	--	---	--	---	--